NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583
High Performance Scientific Computing

Lecture 13:
Case Studies: TwoNorm, PageRank, Lambda

Andrew Lumsdaine

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington

Seattle, WA

Questions from Last Time?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Enengy

UNIVERSITY of
WASHINGTON

Parallelization St=atoecus ——
| Decompose problem into pieces
Finding that can execute concurrently
Concurrency
\ : \ By task or
t Manage sharing by data
Algorithm
Structure | Fundamental

} organizing principle \ Around tasks or around

Supporting data decomposition or

Structures | — Programming paradigms around data flow
t and data structures

Implementation

Mechanisms ——| Manage tasks, move data

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Timothy Mattson, Beverly Sanders, and Berna Massingill. 2004. Pﬁt‘Y‘éWﬁWWHIWWB@W@@XFW&%W%M%H%@W Profel Pty Ot by Bacte | S
v

University of Washington ndrew Lumsdaine

Two Norm Function (Sequential)

double two_norm(const Vector& x) {
double sum = 0.0;
for (size_t i = 0; i < x.num_rows(); ++i) {
sum += x(1i) * x(1i);
+
return std::sqrt(sum);

+

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Partitioned Vector

class PartitionedVector {
public:
PartitionedVector(size_t M) : num_rows_(M), storage_(num_rows_) |[{}

double& operator() (size_t i) { return storage_[i];]
const double& operator() (size_t i) const { return storage_[i];]

size_t num_rows() const { return num_rows_; }

void partition_by_rows(size_t parts) {
size_t xsize = num_rows_ / parts;
partitions_.resize(parts+1);
std::fill(partitions_.begin()+1, partitions_.end(), xsize);
std: :partial_sum(partitions_.begin(), partitions_.end(), partitions_.begin());

+
private:
size_t num_rows_;
std: :vector<double> storage_;
public:
std: :vector<size_t> partitions_;

};

NORTHWEST INSTITUTE for ADVANCED COMPUTING — ‘%37"/7 1"‘ir
Pacific Northwest / £

NATIONAL LABORATORY
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019
WASHINGTON

University of Washington by Andrew Lumsdaine

Two Norm v.1

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) A
sum += x(i) * x(i);
+
return sum;

3

double two_norm_px(const PartitionedVector& x) {
std: :vector<std: :future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std: :async(std: :launch: :async, two_norm_pant, x, p));

3

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get(;

}

return std::sqrt(sum) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING 101 ‘xa?‘// 1"\"
y F'ancrl"jf\:T Northwest

RATORY
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019
Energy WASHINGTON

University of Washington by Andrew Lumsdaine

Timing

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_rx) ;

START_TIMER (two_norm_rx) ;

for (size_t i = 0; i < trips; ++i) {
b += two_norm_rx(x);

+

STOP_TIMER (two_norm_rx) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

10°
— vl
g
T 10}]
E
10!
10°
Num threads
NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest / 5
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ; Bt Sl |

i UNIVERSITY of
University of Washington by Andrew Lumsdaine Energy WASHINGTON

What Happened?

. @® Instruments3
@] @ WE34888) | | two_norm.exe < Run 8 of 8 | 00:00:02 + & O
) Al Instruments Threads [EIE)

B Details ®

Total Samp... Running Time v Self (ms) Symbol Name Recording Info
1501 1501.0ms 61.4% 12.0 ¥main two_norm.exe Target Name: WE34888
1433 1433.0ms 58.6% 0.0 wtwo_norm_px(PartitionedVector const&) 0 n.exe Target Model: MacBock Pro

Target macOS: 10.13.6 (17G6030)

1114 1114.0ms 45.6% 4.0 wstd::__1:future<std::_1::_invoke_of<std::__1::decay<double (&)(PartitionedVe

1065.0ms 43.6% 1065.0 4 PartitionedVector::PartitionedVector(PartitionedVector const&) two_norm.e) Start Time: May 14, 2019 at 9:02:50 AM
45 45.0ms 1.8% 15.0 1:future<double> std::__1::__make_async_assoc_state<double, std::__ End Time: May 14, 2019 at 9:02:52 AM
318 318.0ms 13.0% 318.0 std::__1::_async_assoc_state<double, std::__1::__async_func<double (*)(Partit E:;a:égr;;i:sf:ggzpp exited
1 1.0ms 0.0% 1.0 void std::__1:vector<std::__1::future<double>, std::__1::allocator<std::__1::futt
34 34.0ms 1.3% 2.0 »two_norm_rx(PartitionedVector const&) two_norm Instruments: 10.1 (10861)
21 21.0ms 0.8% 18.0 »two_norm_|(PartitionedVector const&) two_norm.exe
1 1.0ms 0.0% 0.0 pstd::__1::basic_ostream<char, std::__1::char_traits<char> >& std::__1::__put_char Recording Settings
318 318.0ms 13.0% 2.0 pvoid® stdi:__1::__thread_proxy<std::__1::tuple<std::__1:unique_ptrestd::_1::_thre Target: two_norm.exe
307 307.0ms 12.5% 307.0 void* std::__1::__thread_proxy<std::__1::tuple<std::__1::unique_ptrestd::__1::__thre Recording Mode: Immediate
207 207 Nme 47 10 nn Marnid® ctdse 1. thraad nraviectdss Aotunlacetd.. 1ouniana ntreetds 4. threa Time Limit: 12 hours

Call Tree Constraints Data Mining Counters:

Aaiimenca Aanblaea lnm.

Input Filter E

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

NATIONAL LABORATORY

What Happened?

Total Samp... Running Time v Self (ms) Symbol Name
1501 1501.0ms 61.4% 12.0 ¥Ymain two_norm.exe
1433 1433.0ms 58.6% 0.0 vtwo_norm_px(PartitionedVector const&) two_norm.exe
1114 1114.0ms 45.6% 4.0 wstd::__1:future<std::__1::__invoke_of<std::__1::decay<double (&)(PartitionedVe
1065.0ms 43.6% 1065.0 &4 PartitionedVector::PartitionedVector(PartitionedVector const&) two_norm.e
45 45.0ms 1.8% 15.0 pstd::__1::future<double> std::__1::__make_async_assoc_state<double, std::__
318 318.0ms 13.0% 318.0 std::__1::_async_assoc_state<double, std::__1::__async_func<double (*)(Partit
1 1.0ms 0.0% 1.0 void std::__1:vector<std::__1::future<double>, std::__1::allocator<std::__1::futt
34 34.0ms 1.3% 2.0 ptwo_norm_rx(PartitionedVector const&) two_norm.exe
21 21.0ms 0.8% 18.0 ptwo_norm_|(PartitionedVector const&) two_norm.exe
1 1.0ms 0.0% 0.0 pstd::__1::basic_ostream<char, std::__1::char_traits<char> >& std::__1::__put_char
318 318.0ms 13.0% 2.0 pvoid® std::__1::__thread_proxy<std::__1:tuple<std::__1::unique_ptr<std::__1::_thre
307 307.0ms 12.5% 307.0 void* std::__1::__thread_proxy<std::__1::tuple<std::__1:unique_ptrestd::__1::__thre
Q7 207 Nme 19 104 nnNn banid® otnee 1 thraad nraviscted:: 1.tunlasotdd:c 1iaanminua ntrectad 1« thra

Input Filter = Call Tree Constraints Data Mining

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V/ 'W'
Pacif:,c Northwest /

AMATH 483/583 High-Performance Scientific Computing Spring 2019 = UNIVERSITY of /
WASHINGTON

University of Washington by Andrew Lumsdaine

Two Norm v.2

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) A
sum += x(i) * x(i);
}
return sum;

}

double two_norm_rx(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std::async(std: :launch::async, two_norm_paxyt, std::cref(x), p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

}

return std::sqrt(sum);

Pacific Northwest W
NAT |

NORTHWEST INSTITUTE for ADVANCED COMPUTING
O UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ; it R AILer
University of Washington by Andrew Lumsdaine e Sl

Results v.2

10°

Time(ms)
-
53

10}
10°

Num threads

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest / W
0 NATIONAL LABORATORY J
AMATH 483/583 High-Performance Scientific Computing Spring 2019 JR UNIVERSITY of
University of Washington by Andrew Lumsdaine o =

WASHINGTON

Results v.2
10°
— vl
— w2
g 104t 1
E
10°
10°
Num threads
NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ W
Pacific Northwest / 5
AMATH 483/583 High-Performance Scientific Computing Spring 2019 ; Bt Sl |

WASHINGTON

i UNIVERSITY of
University of Washington by Andrew Lumsdaine A

Walkthrough

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Timing all Three Norms

for (size_t num_threads = 1; num_threads <= 8; num_threads *= 2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_px) ;

START_TIMER(two_norm_px) ;

for (size_t i = 0; i < trips; ++i) {
a += two_norm_px(x);

}

STOP_TIMER (two_norm_px) ;

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER(two_norm_rx) ;

START_TIMER (two_norm_rx) ;

for (size_t i = 0; i < trips; ++i) {
b += two_norm_rx(x);

}

STOP_TIMER (two_norm_rx);

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_1); b
START_TIMER (two_norm_1);

—] These are all
o memmnatey the same
}

STOP_TIMER(two_norm_1) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING \17’/ W
Pacific Northwest | 5

o NATIONAL LABORATORY |
AMATH 483/583 High-Performance Scientific Computing Spring 2019 / ;) UNIVERSITY of /

University of Washington by Andrew Lumsdaine WASHINGTON

Functions as Values

We want to
void benchmark(const PartitionedVector& —x)>—E pass in
for (size_t num_threads = 1; num_threads <= 8;

something |21 {

x.partition_by_rows (num_threads) ;

DEF_TIMER (two_norm_px) ;
START_TIMER(two_norm_px) ; Double bonus: It
for (size_t i = 0; i < trips; ++i) {

h (%) just needs an
+= < thi > ;
}) o 1ngX\ That we call / operator()()

STOP_TIMER (two_norm_px) like a function /

Let’s not get
carried away

Pacific Northwest / A\ A A
NATIONAL LABORATORY J

UNIVERSITY o

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Proxwdly Operated by Batese
for the LS. Department of Energy

WASHINGTON

Functions as Values

s a function s Parameter f
void bench(std::funetiggz;ouble (PartitionedVector&)> two_ﬁg;m_f,
PartitionedVector
double a = 0: That returns
for (size_t num_threads = 1; num_threads <= 8; n void {

x.partition_by_rows (num_threads) ;

DEF_TIMER (two_norm_px) ;

START _TIMER(two_norm_px) ;

for (size_t i = 0; i < trips; ++i) {
a += two_norm_f(std: :ref(x));

+

STOP_TIMER (two_norm_px) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : a ‘ UNIVERSITY of
. X . X for o "Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine

Two Norm v.2

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) A
sum += x(i) * x(i);
}
return sum;

}

double two_norm_rx(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std::async(std: :launch::async, two_norm_paxyt, std::cref(x), p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

}

return std::sqrt(sum);

Pacific Northwest W
NAT |

NORTHWEST INSTITUTE for ADVANCED COMPUTING
O UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ; it R AILer
University of Washington by Andrew Lumsdaine e Sl

Launching async()

]
int main(int argc, char*x argv([]) {
unsigned long intervals = 1024 * 1024; ”Helper function”
unsigned long num_blocks = 1; e i
double h = 1.0 / (double)interv (where is it?)

|
[N
=
ct
[0}
H
<
v
|_l
n
~
B
e
=]
(@)
(@]
P
n

unsigned long blocksize =

std: :vector<std::future<double>> Run right
for (unsigned long k = 0; % < num_blocks; ++k away
partial_sums.push_b&ack(
std: :async : :launch: :async,
partial_pi, k * blocksize, (k + 1) * blocksize, h)); Results will

pi += h * partial_sums[k].get();

std::cout << "pi is approximately " << pi << std::endl;

return O; "nr

UNIVERSITY of)
WASHINGTON 1

o

Function Parameter
type name list

[L

double partial_pi(unsigned long begi
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_ p1 += ik

Return
_A{ Return value

, unsigned long end, double h) {

} Function
Return value |/ A Parameters

return partial_ 7 Nname /

}

o

double my_pi partial_pi(0, 100, .001);

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : R & ‘ UNIVERSITY of
. X . X for the of Kisveay WASHINGTON
University of Washington by Andrew Lumsdaine

Named functions

double partial_pi(unsigned long begin, unsi

double h) {

double partial_pi = 0.0; But what is
for (unsigned long i = begin; i < end; this really?
partial_pi += 4.0 / (1.0 + (ixhxix
+
return partial_pi;
} .
Function
Parameters
nName

partial_sums,push_back(
std: :asymc(std: :laungh: :async,

partial_pi, k * blocksize, (k + 1) * blocksize, h));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019

UNIVERSITY of
WASHINGTON

Named variabl

Variable Variable
name q value Value will be
looked up
Call with
double pi = 3.14; variable name [_| And then
N sqrt583 will
double sqrtpi_1 = sqrt583(pi); be called
double sqrtpi_2 = sqrtb583(3.14);]
Call with , ,
Function will
value .
\ be called with

same thing as
before

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o & j UNIVERSITY of
. . . . o oh nt of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Named functions | Function Can | call std::async

name =
// directly with the

double partial pi(unsigned long begin, unsigned long end] .

double partial_pi = 0.0; value of partial_pi

for (unsigned long i = begin; i < end; ++i) A
partial_pi += 4.0 / (1.0 + (i*h*ix*h));

+

return partial_pi; ’///,

Call with

function name R And then

partial_sums.pwéh_back(std::async will
std: :asyngdstd: :launch: :async, be called
partial_pi, k * blocksize, (k + 1) * blocksize, h));

Value will be (yes)
looked up

+

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 8 y [UNIVERSITY of
. . . . for the US. D ut of Energy WASHINGTON
University of Washington by Andrew Lumsdaine)

Name this famous person

Alonzo Church (June 14, 1903 — August 11, 1995)
was an American mathematician and logician who
made major contributions to mathematical logic
and the foundations of theoretical computer
science. He is best known for the lambda
calculus, Church—Turing thesis, proving the
undecidability of the Entscheidungsproblem,
/Fre{i—Church ontology, and the Church—Rosser

Vari theoxem.
ar.lous Alan Turing
formalisms for

computing

Gottlog Frege

John Barkley

Rosser
NORTHWEST INSTITUTE for ADVANCED COMPUTING ~ /
Pacific Northwest

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o e | _UNIVERSITY o f it
. . . . for the US. Department of Energ WASHINGTON
University of Washington by Andrew Lumsdaine

Lambda: Anonymous functions

int main(int argc, charx* argv[]) {

unsigned long intervals = 1024 * 1024;
unsigned long num_blocks = 1;
double h = 1.0 / (double)intervals;

unsigned long blocksize intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (unsigned long k = 0; k < num_blocks; ++k) {
partial_sums.push_back(std::async(std::launch::async, [&]() -> double {
double partial_pi = 0.0;
for (unsigned long i = k * blocksize; i < (k + 1) * blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (i * h * i * h));
}
return partial_pi;
)
}

double pi = 0.0;

for (unsigned long k = 0; k < num_blocks; ++k) {
pi += h * partial_sums[k].get();

+

std::cout << "pi is approximately " << std::setprecision(15) << pi << std::endl;

return O;

AL ATy i e Ly s e e o

acific Northwest / W_

NATIONAI ABORATORY
o UNIVERSITY of
e U ey WASHINGTON

Lambda: Anonymous functions

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std::async(std: :launch: :async,
[] (size_t begin, size_t end, double h) ->_double

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) { Value of

tial_pi += 4.0 / (1.0 + (ixh*ixh)); - -

X partial_pi / ((i*h*i*h)) partial_pi
return partial_pi;

} —

));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : o o [UNIVERSITY of
. . . . for the US nent of Enengy WASHINGTON
University of Washington by Andrew Lumsdaine

Two Norm v.3 Used to be

two_norm_part

double two_norm_1(const PartitionedVector& x) {
std: :vector<std: :future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size(; ++p) {
futures_.emplace_back(std: :async(stdTaunch: :async, [&](size]t p) {

double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; N¢i) {

X sum += x(i) * x(i); N
return sum;
Y, p)); lambda

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

+

return std::sqrt(sum);

NORTHWEST INSTITUTE for ADVANCED COMPUTING ; A/
Paciftc Nortivest -

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : il ' UNIVERSITY of
. . . X for Enecgy WASHINGTON
University of Washington by Andrew Lumsdaine

Before

double partial_pi(size_t begin, size_t end, double h)
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixhx*ix*h));
}

return partial_pi;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY of
WASHINGTON

After

auto partial_pi(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixhx*ix*h));
}

return partial_pi;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . j UNIVERSITY of 3
. . . . e the L ut of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

Before

auto partial_pi(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixhx*ix*h));
}

return partial_pi;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . j UNIVERSITY of 3
. . . . e the L ut of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

After

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
+

return partial_pi;

auto partial_pi = [](size_t begin, size_t end, double h) -> double

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

:

Pacific Northwest W

NATIONAL LABORATORY
UNIVERSITY of

WASHINGTON

Procdly Barene
for the L Enen

I “Lambda” (this ,
Function values _ (Function
is a function
parameters
value)

auto partial_pi = [Tf;;:;_t begin, siﬁgi:/;nd, double h) -> double
{
double partial_pi = 0.0;

for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
+

return partial_pi;

Return type

Return value

What is the
value of

partial_pi?
NORTHWEST INSTITUTE for ADVANCED COMPUTING — vV

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : J = ‘ V:’JANé‘II;IRNSg'F(;j[—Q
University of Washington by Andrew Lumsdaine ot

Before

(std::async(std::launch: :async,
partial_pi,

k * blocksize, (k + 1)
));

*

blocksize, h

NORTHWEST INSTITUTE for ADVANCED COMPUTING \’-7(/ W
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 8 ; e
University of Washington by Andrew Lumsdaine / LA e

UNIVERSITY of
WASHINGTON

After

(std::async(std::launch: :async,
[] (size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));
+
return partial_pi;
}, k * blocksize, (k + 1) * blocksize, h
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 8 [UNIVERSITY of
. . . . for gy WASHINGTON
University of Washington by Andrew Lumsdaine)

Before

(std::async(std::launch: :async,
partial_pi,

Function name

k * blocksize, (k + 1) * blocksize, h
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ W
Pacific Northwest

/ NATIONAL LABORATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 ooty — R AILer

University of Washington by Andrew Lumsdaine

After

// Function value
(std::async(std::launch: :async,

[] (size_t begin, size_t end, double h) -> double

{
async “sees” the double partial_pi = 0.0;
same thing for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));
+

return partial_pi;
}, k * blocksize, (k + 1) * blocksize, h
));

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 8 o & ' UNIVERSITY of
. . . . foe the of Kisveay WASHINGTON
University of Washington by Andrew Lumsdaine)

All together

int main(int argc, charx argv([]) {

—

}

size_t intervals = 1024 *x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std::async(std::launch: :async,

[1(size_t begin, size_t end, double h) -> double

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*i*h));
}
return partial_pi;
, k * blocksize, (k + 1) * blocksize, h
));

double pi = 0.

for (size_t k = 0; k < num_blocks; ++k) {
pi += h * partial_sums[k].get();

}

std::cout << "pi is approximately " << std::setprecision(15)
pi << std::endl;

0;

return O;

<<

W

UNIVERSITY of
WASHINGTON

All together zoomed

size_t intervals
size_t num_blocks
double h

size_t blocksize

{

|

std: :vector<std::future<double>> partial_sums;

1024 x 1024;
L5

= 1.0 / (double)intervals;
intervals / num_blocks;

Function

for (size_t k = 0; k < num_blocks; ++k) {
. push. back / parameters

(std: :agync(std: :launch: :async,

[1(size_t begin, size_t end, double h) -> double

Why can’t we
use k, blocksize,
and h directly?

1ble partial_pi = 0.0;
- (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));

curn partial_pi; a’//////’

Illl));

, k * blocksize, (k + 1) * blocksize, h

Passed
parameters

UNIVERSITY of

WASHINGTON

Capture

size_t intervals
size_t num_blocks
double h

size_t blocksize

{

+

));

1024 * 1024;
15

= 1.0 / (doub
intervals / num_bl

std: :vector<std: :future<double>> partia

for (size_t k = 0; k < num_blocks; ++k)
partial_sums.push_back
(std::async(std::launch: :async,
[JO -> double

double partial_pi = O
for (size_t i = kx*blo

partial_pi += 4.0 /

return partial_pi;

$ c++ -std=c++11 capture.cpp

for (size_t i = kxblocksize; i < (k+1)*blocksize;
N

for (size_t k = @; k < num_blocks; ++k) {
A

[1() —> double
A

for (size_t i = kxblocksize; i < (k+1)xblocksize;
A

size_t blocksize = intervals / num_blocks;
A

[1() —> double
A

for (size_t i = kxblocksize; i < (k+1)*blocksize;
A

for (size_t k = @; k < num_blocks; ++k) {
A

[1() -> double

size_t blocksize = intervals / num_blocks;
A
[1() —> double
A
partial_pi += 4.0 / (1.0 + (ixhxixh));
A
double h = 1.0 / (double)intervals;
A
[1() —> double
A
partial_pi += 4.0 / (1.0 + (ixhxixh));
A
double h = 1.0 / (double)intervals;
A

[1() -> double

for (size_t i = kkblocksize; i < (k+1)*blocksize;
A

++1)

++1)

++1)

++1)

{

{

{

{

W

VERSITY of
HINGTON

i

Before

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[JO -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING 101 ‘77‘// 1‘Aur
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ooty —
University of Washington by Andrew Lumsdaine st b

UNIVERSITY of
WASHINGTON

After

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[&] () -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING 202 *q;f/, W‘Aur
Pacific Northwest

NATIONAL LABORATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 Pty Ot by Bacte R AILer

University of Washington by Andrew Lumsdaine

After after

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[=] () -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING 101 ‘77‘// 1‘Aur
Pacific Northwest

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
Poigros/ drrrdic WASHINGTON

After after after

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[k, blocksize, &h] () -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING 101 ‘77‘// 1‘Aur
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : ooty —
University of Washington by Andrew Lumsdaine st b

UNIVERSITY of
WASHINGTON

Capture all by reference

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std: :future<doub|

Capture all
by reference

for (size_t k = 0; k < num_
partial_sums.push_bac

(std: :async(std~Taunch:
[£]1 () -> doubTe
{

double partial_pi = 0.0;

for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));

+

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING 101 ‘77‘// 1‘Aur
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Capture all by value

size_t intervals = 1024 x 1024;
size_t num_blocks = 1;
double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;
std: :vector<std: :future<doub|
for (size_t k = 0; k < num_ Capture a”

partial_sums.push_bac by value

(std: :async(std~Taunch:
[=]) -> doubre

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
+

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V’/ W
Pacific Northwest /

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Capture some by value, some by reference

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std: :future<doub|

Pick and

for (size_t k = 0; k < num_

partial_sums.push_bac choose
(std: :async(std~Taunch:
[k, blOCkSiZEﬂuJ W) goupIre

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
}

return partial_pi;

)

NORTHWEST INSTITUTE for ADVANCED COMPUTING 200 ‘qﬁ‘// 1‘Aur

Pacifi orthwest

NATIONAL LABORATORY

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

[UNIVERSITY of
Lol WASHINGTON

Who Wants to be a Billionaire’? | iy i

R a2 United States Patent (10) Patent No.: US 6,285,999 B1

a» United States Patent (10) Patent No.: US 6,285,999 B1
Page (5) Date of Patent: Sep. 4, 2001 Page (45) Date Of Patent. Sep 4 2001
. o Ty
(54) METHOD FOR NODE RANKING IN A
LINKED DATAR £

(75) Inventor: Lawrence Page, Stanford, CA (US)

‘The Board of Trustees of the Leland
Stanford Junior University, Stanford,
CA(US)

(54) METHOD FOR NODE RANKING IN A Craig Boyle “To link or not to link: An empirical comparison
LINKED DATABASE of Hypertext linking strategies”. ACM 1992, pp. 221-231.*

L. Katz, “A new status index derived from sociometric

analysis,” 1953, Psychometricka, vol. 18, pp. 39-43.

(*) Notice: Su
pa
u.

s a tool in journal
71-479.

(1) Appl. No.: 09/004,827
(22) Filed: Jan.9, 1998
R

(75) Inventor: Lawrence Page, Stanford, CA (US)

d U.S. Application Data
No. 60/035,205, filed on Jan. 10,

citation influence methodology of Pinski
Inf. Proc. And Management, vol. 14, pp.

e - s o (73) Assignee: The Board of Trustees of the Leland C.H. Hubbell, “An input-output approach to clique identi-

707/513, 1-3, 10, 104, S01; 345/440; 38212
2

o) Stanford Junior University, Stanford, fication sociometry,” 1965, pp. 377-399.
CA (US) Mizruchi et al., “Techniques for disaggregating centrality
scores in social networks,” 1996, Sociological Methodology,
(*) Notice: Subject to any disclaimer, the term of this pp. 26-48.

patent is extended or adjusted under 35 E. Garfield, “Citation analysis as a tool in journal evalua-

(56) References Cited
S PATI . . r—Uyen Le
U'S: PATENT DOCUMENTS ent, or Firm—arcity & Snyder LLP.

el 34540 ABSTRACT

U.S.C. 154(b) by 0 days. tion,” 1972, Science, vol. 178, pp. 471-479.
o ——— ') Pinski et al., “Citation influence for journal aggregates of
T (1) Appl. No.: 09/004,827 scientific publications: Theory, with application to the lit-
. (22) Filed: Jan. 9, 1998 erature of physics,” 1976, Inf. Proc. And Management, vol.
| = 12, pp. 297-312.
AT Related U.S. Application Data N. Geller, “On the citation influence methodology of Pinski
B (60) Provisional application No. 60/035,205, filed on Jan. 10, and Narin,” 1978, Inf. Proc. And Management, vol. 14, pp.
of 1997.
_ 93-95.
(51) Int. CL e GO6F 17/30 P. Doreian, “Measuring the relative standing of disciplinary
(52) US.Cl .o 707/5; 707/7; 707/501 journals,” 1988, Inf. Proc. And Management, vol. 24, pp.
(58) Field of Searchccoccoceeeeee. 707/100, 5, 7, 45-56.

Pacific Northwest

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 s iy ‘ UNIVERSITY of
. . . . > WASHINGTON
University of Washington by Andrew Lumsdaine

Ranking Web Pages with PageRank
Model as /

= oo a graph /0\>o\

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 | nATOMACLASORFOR | univeRsITY, f
. X . X for the ULS. Department of Energy WASHINGTON
University of Washington by Andrew Lumsdaine

[
e
1
24

Ranking Web Pages with PageRank

Pacific Northwest

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 - UNIVERSITY of
; . ; : / : WASHINGTON
University of Washington by Andrew Lumsdaine /

/

Might click
this link

here

Surfing: Random Walk on the Web Graph

‘/O/O\m\

v

Or this
link
/ . With equal
probability
A surfer

Or this
NORTHWEST INSTITUTE for ADVANCED (CC ||nk
AMATH 4

ific Computing Spring 2019 : NAV Syt ‘ UNIVERSITY of

University of Washington by Andrew Lumsdaine

Surfing: Random Walk on the Web Graph

Modified random
If we do this for — walk includes
a long time “teleportation”

PageRank: Order
vertices by
importance

“Important”
vertex (site)

Some vertices (sites)
will be visited more

often than others
NORTHWEST INSTITU £ jur AUVAINLED LUNMIFU I 1ING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : - & ‘ UNIVERSITY of
. . . X foe o e of Kinegy WASHINGTON
University of Washington by Andrew Lumsdaine

Vector Representation

Probability that
user will follow
link from i to k

Probability that
user will follow
link from i to k

NORTHWE‘NST/TUTEfO/’ ADVANCED COMPUTING

AMATH 483/583 High-Performan

Pji + Dki =

y

Stochasticity

Graph of
links

Stochastic
(column) vector
for node i

Entry at row |
for edge from i

Entry at row kK
for edge from i

ce Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Pacific Northwest W
NATIONAL LABORATORY J

UNIVERSITY o

e U1, Dopetrantof Evargy WASHINGTON

L
-
04

Matrix Vector - 0 NodeO | _ 1LNodeZ Probability that
T 2 user will follow
5 0 link from i to kK
1
/2 /2 > 0 /
1 - 1 0"
/2 0 | 5 0 0 5 O
1 1
| Nodel Node 3 2 00 3
O— : : 110 §
077 0T 2 2
1
/2 0 1 0 0 5 0 _
1/2 2 /
1 1 y
/2 2 Put vectors .
U L 0 1 | together into Zpij =1V
a matrix z
NORTHWEST INSTITUTE for ADVANCED COMPUTING

Random Walk / Markov Process «is an
Probability eigenvector of P
(9 — | userisatO)) N
What is the
P10 D20 — - T~ = PZU
\ Probability eigenvalue?
Po2 user moves
O from O to 2 E pij =1 Vj
\332 = P20Zo 1+ P21T1 + P23T3 i
Probability . —
< at 2 E :5’73 —
user is at v — sz'jxj -
j
NORTHWEST INSTITUTE for ADVANCED COMPUTING s na i wae

Some Facts

« Exploit Zpij =1 Vi and consider left eigenvalues (which are
same as right eigenvalues

« By Gershgorin, all (left) eigenvalues are in or on a circle of radius 1
« Thatis, spectral radius is equal to unity

« By Perron-Frobenius, there is a unique eigenvalue at the spectral
radius (there is unique eigenvalue equal to unity)

 Conclusion, there is an x that satisfies L — PZE

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 @ - /' _UNIVERSITY, o
University of Washington by Andrew Lumsdaine] o "‘

Computing Solution Let

. Let & = P& z= lim Pfy

k— 00

Then

« Claim >

klim PFy
lim Py =4 for an e
k— o0 Y yy = lim PP"y

k— 00

But is |— P lim Pky

SO: ii‘ — Z Unique w

= Pz = z=Pz

NORTHWEST INSTITUTE for ADVANCED COMPUTING \V/ W
P e g

AMATH 483/583 High-Performance Scientific Computing Spring 2019 :
University of Washington by Andrew Lumsdaine

UNIVERSITY o

e ' A
ooy ol WASHINGTON / |

Computing Solution | Matrix-matrix

Matrix-vector

product (k of them) / product (k of them)
lim Pm y (P*)z = P(P(P...(Px)))

k— 0o |

Vector x(N);

EXpensive! randomize (x) ;
x = (1.0 / one_norm(x)) * x;

for (size_t i = 0; i < max_iters; ++i) {
Vector y = P * x;
if (two_norm(x - y) < tol) {
return y;
}
X = V;

}

NORTHWEST INSTITL

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

™

Much
cheaper!

UNIVERSITY o

4 :1
WASHINGTON 1

Teleportation

Once we get into
this cycle we
can’t get out

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

_~| PageRank includes
“teleportation”

UNIVERSITY of
WASHINGTON

Teleportation

Include
teleportation
computationally

8
Q/:E

Scale to maintain

/ from a site to any
other site

I 1 1

I 1 1

r 1 ... 1
- _

Markov chain
properties

NORTHWEST INSTITUTE for ADW

Sum of all elements
in column is equal
to unity

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

+(1—-—a)P

Small probability
that user might go

nnnnnnnnnnnn

Simplifying Teleportation

1
Ny

N 1 Small bias

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance
University of Washington by Andrew Lumsdaine

Pacific Northwest
NATIONAL LABORATORY

Scientific Computing Spring 2019 : ‘ UNIVERSITY of
coencofEney | WASHINGTON

Algorithm with Teleportation

Vector x(N);
randomize (x) ;
x = (1.0 / one_norm(x)) * x;

if (two_norm(x - y) < tol) {
return y;

+

X = V;

by

Teleportation
bias

for (size_t i = 0; 1 < max_iters; ++i) { ////
Vector y = (1.0 - alpha) * P * x + alpha / x.num_rows();

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

7

UNIVERSITY of
WASHINGTON

Parallelization St=atoecus ——
| Decompose problem into pieces
Finding that can execute concurrently
Concurrency
\ : \ By task or
t Manage sharing by data
Algorithm
Structure | Fundamental

} organizing principle \ Around tasks or around

Supporting data decomposition or

Structures | — Programming paradigms around data flow
t and data structures

Implementation

Mechanisms ——| Manage tasks, move data

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Timothy Mattson, Beverly Sanders, and Berna Massingill. 2004. Pﬁt‘Y‘éWﬁWWHIWWB@W@@XFW&%W%M%H%@W Profel Pty Ot by Bacte | S
v

University of Washington ndrew Lumsdaine

Walkthrough

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

UNIVERSITY of
WASHINGTON

Thank you!

NORTHWEST INSTITUTE for ADVANCED COMPUTING \gy’/ W
y Pacific Northwest /

NATIONAL LABORATORY

UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019 j /
f Energy WASHINGTON

University of Washington by Andrew Lumsdaine

Creative Commons BY-NC-SA 4.0 License

D0 e,

© Andrew Lumsdaine, 2017-2019

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

W

UNIVERSITY o

f
WASHINGTON

[
b1
1
24

