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Questions from Last Time?
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Parallelization St=atoecus ——
| Decompose problem into pieces
Finding that can execute concurrently
Concurrency
\ : \ By task or
t Manage sharing by data
Algorithm
Structure | Fundamental

} organizing principle \ Around tasks or around

Supporting data decomposition or

Structures | — Programming paradigms around data flow
t and data structures

Implementation

Mechanisms ——| Manage tasks, move data
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Two Norm Function (Sequential)

double two_norm(const Vector& x) {
double sum = 0.0;
for (size_t i = 0; i < x.num_rows(); ++i) {
sum += x(1i) * x(1i);
+
return std::sqrt(sum);

+
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Partitioned Vector

class PartitionedVector {
public:
PartitionedVector(size_t M) : num_rows_(M), storage_(num_rows_) |[{}

double& operator() (size_t i) { return storage_[i]; ]
const double& operator() (size_t i) const { return storage_[i]; ]

size_t num_rows() const { return num_rows_; }

void partition_by_rows(size_t parts) {
size_t xsize = num_rows_ / parts;
partitions_.resize(parts+1);
std::fill(partitions_.begin()+1, partitions_.end(), xsize);
std: :partial_sum(partitions_.begin(), partitions_.end(), partitions_.begin());

+
private:
size_t num_rows_;
std: :vector<double> storage_;
public:
std: :vector<size_t> partitions_;

};
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Two Norm v.1

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) A
sum += x(i) * x(i);
+
return sum;

3

double two_norm_px(const PartitionedVector& x) {
std: :vector<std: :future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std: :async(std: :launch: :async, two_norm_pant, x, p));

3

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get(;

}

return std::sqrt(sum) ;

NORTHWEST INSTITUTE for ADVANCED COMPUTING 101 ‘xa?‘// 1"\"
y F'ancrl"jf\:T Northwest

RATORY
UNIVERSITY of

AMATH 483/583 High-Performance Scientific Computing Spring 2019
Energy WASHINGTON

University of Washington by Andrew Lumsdaine




Timing

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_rx) ;

START_TIMER (two_norm_rx) ;

for (size_t i = 0; i < trips; ++i) {
b += two_norm_rx(x);

+

STOP_TIMER (two_norm_rx) ;
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What Happened?

. @® Instruments3
@] @ WE34888 ) | | two_norm.exe < Run 8 of 8 | 00:00:02 + & O
) Al Instruments  Threads [EIE)

B Details ®

Total Samp... Running Time v Self (ms) Symbol Name Recording Info
1501 1501.0ms 61.4% 12.0 ¥main two_norm.exe Target Name: WE34888
1433 1433.0ms 58.6% 0.0 wtwo_norm_px(PartitionedVector const&) 0 n.exe Target Model: MacBock Pro

Target macOS: 10.13.6 (17G6030)

1114 1114.0ms 45.6% 4.0 wstd::__1:future<std::_1::_invoke_of<std::__1::decay<double (&)(PartitionedVe

1065.0ms 43.6% 1065.0 4 PartitionedVector::PartitionedVector(PartitionedVector const&) two_norm.e) Start Time: May 14, 2019 at 9:02:50 AM
45 45.0ms 1.8% 15.0 1:future<double> std::__1::__make_async_assoc_state<double, std::__ End Time: May 14, 2019 at 9:02:52 AM
318 318.0ms 13.0% 318.0 std::__1::_async_assoc_state<double, std::__1::__async_func<double (*)(Partit E:;a:égr;;i:sf:ggzpp exited
1 1.0ms 0.0% 1.0 void std::__1:vector<std::__1::future<double>, std::__1::allocator<std::__1::futt
34 34.0ms 1.3% 2.0 »two_norm_rx(PartitionedVector const&) two_norm Instruments: 10.1 (10861)
21 21.0ms 0.8% 18.0 »two_norm_|(PartitionedVector const&) two_norm.exe
1 1.0ms 0.0% 0.0 pstd::__1::basic_ostream<char, std::__1::char_traits<char> >& std::__1::__put_char Recording Settings
318 318.0ms 13.0% 2.0 pvoid® stdi:__1::__thread_proxy<std::__1::tuple<std::__1:unique_ptrestd::_1::_thre Target: two_norm.exe
307 307.0ms 12.5% 307.0 void* std::__1::__thread_proxy<std::__1::tuple<std::__1::unique_ptrestd::__1::__thre Recording Mode: Immediate
207 207 Nme 47 10 nn Marnid® ctdse 1. thraad nraviectdss  Aotunlacetd..  1ouniana ntreetds 4. threa Time Limit: 12 hours

Call Tree Constraints Data Mining Counters:

Aaiimenca Aanblaea lnm.

Input Filter E
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What Happened?

Total Samp... Running Time v Self (ms) Symbol Name
1501 1501.0ms 61.4% 12.0 ¥Ymain two_norm.exe
1433 1433.0ms 58.6% 0.0 vtwo_norm_px(PartitionedVector const&) two_norm.exe
1114 1114.0ms 45.6% 4.0 wstd::__1:future<std::__1::__invoke_of<std::__1::decay<double (&)(PartitionedVe
1065.0ms 43.6% 1065.0 &4 PartitionedVector::PartitionedVector(PartitionedVector const&) two_norm.e
45 45.0ms 1.8% 15.0 pstd::__1::future<double> std::__1::__make_async_assoc_state<double, std::__
318 318.0ms 13.0% 318.0 std::__1::_async_assoc_state<double, std::__1::__async_func<double (*)(Partit
1 1.0ms 0.0% 1.0 void std::__1:vector<std::__1::future<double>, std::__1::allocator<std::__1::futt
34 34.0ms 1.3% 2.0 ptwo_norm_rx(PartitionedVector const&) two_norm.exe
21 21.0ms 0.8% 18.0 ptwo_norm_|(PartitionedVector const&) two_norm.exe
1 1.0ms 0.0% 0.0 pstd::__1::basic_ostream<char, std::__1::char_traits<char> >& std::__1::__put_char
318 318.0ms 13.0% 2.0 pvoid® std::__1::__thread_proxy<std::__1:tuple<std::__1::unique_ptr<std::__1::_thre
307 307.0ms 12.5% 307.0 void* std::__1::__thread_proxy<std::__1::tuple<std::__1:unique_ptrestd::__1::__thre
Q7 207 Nme 19 104 nnNn banid® otnee 1 thraad nraviscted:: 1.tunlasotdd:c 1iaanminua ntrectad 1« thra

Input Filter = Call Tree Constraints Data Mining
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Two Norm v.2

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) A
sum += x(i) * x(i);
}
return sum;

}

double two_norm_rx(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std::async(std: :launch::async, two_norm_paxyt, std::cref(x), p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

}

return std::sqrt(sum);
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Results v.2
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-
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Num threads
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Walkthrough
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Timing all Three Norms

for (size_t num_threads = 1; num_threads <= 8; num_threads *= 2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_px) ;

START_TIMER(two_norm_px) ;

for (size_t i = 0; i < trips; ++i) {
a += two_norm_px(x);

}

STOP_TIMER (two_norm_px) ;

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER(two_norm_rx) ;

START_TIMER (two_norm_rx) ;

for (size_t i = 0; i < trips; ++i) {
b += two_norm_rx(x);

}

STOP_TIMER (two_norm_rx);

for (size_t num_threads = 1; num_threads <= 8; num_threads*=2) {
x.partition_by_rows(num_threads) ;

DEF_TIMER (two_norm_1); b
START_TIMER (two_norm_1);

—] These are all
o memmnatey the same
}

STOP_TIMER(two_norm_1) ;
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Functions as Values

We want to
void benchmark(const PartitionedVector& —x)>—E pass in
for (size_t num_threads = 1; num_threads <= 8;

something |21 {

x.partition_by_rows (num_threads) ;

DEF_TIMER (two_norm_px) ;
START_TIMER(two_norm_px) ; Double bonus: It
for (size_t i = 0; i < trips; ++i) {

h (%) just needs an
+= < thi > ;
} ) o 1ngX\ That we call / operator()()

STOP_TIMER (two_norm_px) like a function /

Let’s not get
carried away
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Functions as Values

s a function s Parameter f
void bench(std::funetiggz;ouble (PartitionedVector&)> two_ﬁg;m_f,
PartitionedVector
double a = 0: That returns
for (size_t num_threads = 1; num_threads <= 8; n void {

x.partition_by_rows (num_threads) ;

DEF_TIMER (two_norm_px) ;

START _TIMER(two_norm_px) ;

for (size_t i = 0; i < trips; ++i) {
a += two_norm_f(std: :ref(x));

+

STOP_TIMER (two_norm_px) ;
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Two Norm v.2

double two_norm_part(const PartitionedVector& x, size_t p) {
double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; ++i) A
sum += x(i) * x(i);
}
return sum;

}

double two_norm_rx(const PartitionedVector& x) {
std: :vector<std::future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
futures_.push_back(std::async(std: :launch::async, two_norm_paxyt, std::cref(x), p));

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

}

return std::sqrt(sum);
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Launching async()

]
int main(int argc, char*x argv([]) {
unsigned long intervals = 1024 * 1024; ”Helper function”
unsigned long num_blocks = 1; e i
double h = 1.0 / (double)interv (where is it?)

|
[N
=
ct
[0}
H
<
v
|_l
n
~
B
e
=]
(@)
(@]
P
n

unsigned long blocksize =

std: :vector<std::future<double>> Run right
for (unsigned long k = 0; % < num_blocks; ++k away
partial_sums.push_b&ack(
std: :async : :launch: :async,
partial_pi, k * blocksize, (k + 1) * blocksize, h)); Results will

pi += h * partial_sums[k].get();

std::cout << "pi is approximately " << pi << std::endl;

return O; "nr
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Function Parameter
type name list

[ L

double partial_pi(unsigned long begi
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_ p1 += ik

Return
_A{ Return value

, unsigned long end, double h) {

} Function
Return value |/ A Parameters

return partial_ 7 Nname /

}

o

double my_pi partial_pi(0, 100, .001);
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Named functions

double partial_pi(unsigned long begin, unsi

double h) {

double partial_pi = 0.0; But what is
for (unsigned long i = begin; i < end; this really?
partial_pi += 4.0 / (1.0 + (ixhxix
+
return partial_pi;
} .
Function
Parameters
nName

partial_sums,push_back(
std: :asymc(std: :laungh: :async,

partial_pi, k * blocksize, (k + 1) * blocksize, h));
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Named variabl

Variable Variable
name q value Value will be
looked up
Call with
double pi = 3.14; variable name [\_| And then
N sqrt583 will
double sqrtpi_1 = sqrt583(pi); be called
double sqrtpi_2 = sqrtb583(3.14); ]
Call with , ,
Function will
value .
\ be called with

same thing as
before
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Named functions | Function Can | call std::async

name =
// directly with the

double partial pi(unsigned long begin, unsigned long end ] .

double partial_pi = 0.0; value of partial_pi

for (unsigned long i = begin; i < end; ++i) A
partial_pi += 4.0 / (1.0 + (i*h*ix*h));

+

return partial_pi; ’///,

Call with

function name R And then

partial_sums.pwéh_back( std::async will
std: :asyngdstd: :launch: :async, be called
partial_pi, k * blocksize, (k + 1) * blocksize, h));

Value will be (yes)
looked up

+
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Name this famous person

Alonzo Church (June 14, 1903 — August 11, 1995)
was an American mathematician and logician who
made major contributions to mathematical logic
and the foundations of theoretical computer
science. He is best known for the lambda
calculus, Church—Turing thesis, proving the
undecidability of the Entscheidungsproblem,
/Fre{i—Church ontology, and the Church—Rosser

Vari theoxem.
ar.lous Alan Turing
formalisms for

computing

Gottlog Frege

John Barkley

Rosser
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Lambda: Anonymous functions

int main(int argc, charx* argv[]) {

unsigned long intervals = 1024 * 1024;
unsigned long num_blocks = 1;
double h = 1.0 / (double)intervals;

unsigned long blocksize intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (unsigned long k = 0; k < num_blocks; ++k) {
partial_sums.push_back(std::async(std::launch::async, [&]() -> double {
double partial_pi = 0.0;
for (unsigned long i = k * blocksize; i < (k + 1) * blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (i * h * i * h));
}
return partial_pi;
)
}

double pi = 0.0;

for (unsigned long k = 0; k < num_blocks; ++k) {
pi += h * partial_sums[k].get();

+

std::cout << "pi is approximately " << std::setprecision(15) << pi << std::endl;

return O;
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Lambda: Anonymous functions

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std::async(std: :launch: :async,
[] (size_t begin, size_t end, double h) ->_double

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) { Value of

tial_pi += 4.0 / (1.0 + (ixh*ixh)); - -

X partial_pi / ( (i*h*i*h)) partial_pi
return partial_pi;

} —

));
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Two Norm v.3 Used to be

two_norm_part

double two_norm_1(const PartitionedVector& x) {
std: :vector<std: :future<double>> futures_;
for (size_t p = 0; p < x.partitions_.size( ; ++p) {
futures_.emplace_back(std: :async(stdTaunch: :async, [&](size]t p) {

double sum = 0.0;
for (size_t i = x.partitions_[p]; i < x.partitions_[p+1]; N¢i) {

X sum += x(i) * x(i); N
return sum;
Y, p)); lambda

}

double sum = 0.0;

for (size_t p = 0; p < x.partitions_.size()-1; ++p) {
sum += futures_[p].get();

+

return std::sqrt(sum);
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Before

double partial_pi(size_t begin, size_t end, double h)
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixhx*ix*h));
}

return partial_pi;
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After

auto partial_pi(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixhx*ix*h));
}

return partial_pi;
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Before

auto partial_pi(size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixhx*ix*h));
}

return partial_pi;

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 : . j UNIVERSITY of 3
. . . . e the L ut of Energy WASHINGTON
University of Washington by Andrew Lumsdaine




After

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
+

return partial_pi;

auto partial_pi = [](size_t begin, size_t end, double h) -> double
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I “Lambda” (this ,
Function values _ ( Function
is a function
parameters
value)

auto partial_pi = [Tf;;:;_t begin, siﬁgi:/;nd, double h) -> double
{
double partial_pi = 0.0;

for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
+

return partial_pi;

Return type

Return value

What is the
value of

partial_pi?
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Before

(std::async(std::launch: :async,
partial_pi,

k * blocksize, (k + 1)
));

*

blocksize, h
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After

(std::async(std::launch: :async,
[] (size_t begin, size_t end, double h) -> double
{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));
+
return partial_pi;
}, k * blocksize, (k + 1) * blocksize, h
));
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Before

(std::async(std::launch: :async,
partial_pi,

Function name

k * blocksize, (k + 1) * blocksize, h
));
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After

// Function value
(std::async(std::launch: :async,

[] (size_t begin, size_t end, double h) -> double

{
async “sees” the double partial_pi = 0.0;
same thing for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*ix*h));
+

return partial_pi;
}, k * blocksize, (k + 1) * blocksize, h
));
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All together

int main(int argc, charx argv([]) {

—

}

size_t intervals = 1024 *x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std::async(std::launch: :async,

[1(size_t begin, size_t end, double h) -> double

{
double partial_pi = 0.0;
for (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*i*h));
}
return partial_pi;
, k * blocksize, (k + 1) * blocksize, h
));

double pi = 0.

for (size_t k = 0; k < num_blocks; ++k) {
pi += h * partial_sums[k].get();

}

std::cout << "pi is approximately " << std::setprecision(15)
pi << std::endl;

0;

return O;

<<

W
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All together zoomed

size_t intervals
size_t num_blocks
double h

size_t blocksize

{

|

std: :vector<std::future<double>> partial_sums;

1024 x 1024;
L5

= 1.0 / (double)intervals;
intervals / num_blocks;

Function

for (size_t k = 0; k < num_blocks; ++k) {
.  push. back / parameters

(std: :agync(std: :launch: :async,

[1(size_t begin, size_t end, double h) -> double

Why can’t we
use k, blocksize,
and h directly?

1ble partial_pi = 0.0;
- (size_t i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));

curn partial_pi; a’//////’

Illl ));

, k * blocksize, (k + 1) * blocksize, h

Passed
parameters
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Capture

size_t intervals
size_t num_blocks
double h

size_t blocksize

{

+

));

1024 * 1024;
15

= 1.0 / (doub
intervals / num_bl

std: :vector<std: :future<double>> partia

for (size_t k = 0; k < num_blocks; ++k)
partial_sums.push_back
(std::async(std::launch: :async,
[JO -> double

double partial_pi = O
for (size_t i = kx*blo

partial_pi += 4.0 /

return partial_pi;

$ c++ -std=c++11 capture.cpp

for (size_t i = kxblocksize; i < (k+1)*blocksize;
N

for (size_t k = @; k < num_blocks; ++k) {
A

[1() —> double
A

for (size_t i = kxblocksize; i < (k+1)xblocksize;
A

size_t blocksize = intervals / num_blocks;
A

[1() —> double
A

for (size_t i = kxblocksize; i < (k+1)*blocksize;
A

for (size_t k = @; k < num_blocks; ++k) {
A

[1() -> double

size_t blocksize = intervals / num_blocks;
A
[1() —> double
A
partial_pi += 4.0 / (1.0 + (ixhxixh));
A
double h = 1.0 / (double)intervals;
A
[1() —> double
A
partial_pi += 4.0 / (1.0 + (ixhxixh));
A
double h = 1.0 / (double)intervals;
A

[1() -> double

for (size_t i = kkblocksize; i < (k+1)*blocksize;
A

++1)

++1)

++1)

++1)

{

{

{

{

W
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Before

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[JO -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)
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After

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[&] () -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)
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After after

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[=] () -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)
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After after after

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std::future<double>> partial_sums;

for (size_t k = 0; k < num_blocks; ++k) {
partial_sums.push_back
(std: :async(std: :launch: :async,

[k, blocksize, &h] () -> double

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {

partial_pi += 4.0 / (1.0 + (ixh*ix*h));

b

return partial_pi;

)
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Capture all by reference

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std: :future<doub|

Capture all
by reference

for (size_t k = 0; k < num_
partial_sums.push_bac

(std: :async(std~Taunch:
[£]1 () -> doubTe
{

double partial_pi = 0.0;

for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));

+

return partial_pi;

)
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Capture all by value

size_t intervals = 1024 x 1024;
size_t num_blocks = 1;
double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;
std: :vector<std: :future<doub|
for (size_t k = 0; k < num_ Capture a”

partial_sums.push_bac by value

(std: :async(std~Taunch:
[=] ) -> doubre

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
+

return partial_pi;

)
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Capture some by value, some by reference

size_t intervals = 1024 x 1024;

size_t num_blocks = 1;

double h = 1.0 / (double)intervals;
size_t blocksize = intervals / num_blocks;

std: :vector<std: :future<doub|

Pick and

for (size_t k = 0; k < num_

partial_sums.push_bac choose
(std: :async(std~Taunch:
[k, blOCkSiZEﬂuJ W) goupIre

{
double partial_pi = 0.0;
for (size_t i = k*blocksize; i < (k+1)*blocksize; ++i) {
partial_pi += 4.0 / (1.0 + (ixh*ixh));
}

return partial_pi;

)
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Ranking Web Pages with PageRank
Model as /

= oo a graph /0\>o\
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Ranking Web Pages with PageRank
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/

Might click
this link

here

Surfing: Random Walk on the Web Graph

‘/O/O\m\

v

Or this
link
/ . With equal
probability
A surfer

Or this
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Surfing: Random Walk on the Web Graph

Modified random
If we do this for — walk includes
a long time “teleportation”

PageRank: Order
vertices by
importance

“Important”
vertex (site)

Some vertices (sites)
will be visited more

often than others
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Vector Representation

Probability that
user will follow
link from i to k

Probability that
user will follow
link from i to k
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AMATH 483/583 High-Performan

Pji + Dki =

y

Stochasticity

Graph of
links

Stochastic
(column) vector
for node i

Entry at row |
for edge from i

Entry at row kK
for edge from i

ce Scientific Computing Spring 2019
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Matrix Vector - 0 NodeO | _ 1LNodeZ Probability that
T 2 user will follow
5 0 link from i to kK
1
/2 /2 > 0 /
1 - 1 0"
/2 0 | 5 0 0 5 O
1 1
| Nodel Node 3 2 00 3
O— : : 110 §
077 0T 2 2
1
/2 0 1 0 0 5 0 _
1/2 2 /
1 1 y
/2 2 Put vectors .
U L 0 1 | together into Zpij =1V
a matrix z
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Random Walk / Markov Process «is an
Probability eigenvector of P
(9 — | userisatO ) ) N
What is the
P10 D20 — - T~ = PZU
\ Probability eigenvalue?
Po2 user moves
O from O to 2 E pij =1 Vj
\332 = P20Zo 1+ P21T1 + P23T3 i
Probability . —
< at 2 E :5’73 —
user is at v — sz'jxj -
j
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Some Facts

« Exploit Zpij =1 Vi and consider left eigenvalues (which are
same as right eigenvalues

« By Gershgorin, all (left) eigenvalues are in or on a circle of radius 1
« Thatis, spectral radius is equal to unity

« By Perron-Frobenius, there is a unique eigenvalue at the spectral
radius (there is unique eigenvalue equal to unity)

 Conclusion, there is an x that satisfies L — PZE
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Computing Solution Let

. Let & = P& z= lim Pfy

k— 00

Then

« Claim >

klim PFy
lim Py =4 for an e
k— o0 Y yy = lim PP"y

k— 00

But  is |— P lim Pky

SO: ii‘ — Z Unique w

= Pz = z=Pz
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Computing Solution | Matrix-matrix

Matrix-vector

product (k of them) / product (k of them)
lim Pm y (P*)z = P(P(P...(Px)))

k— 0o |

Vector x(N);

EXpensive! randomize (x) ;
x = (1.0 / one_norm(x)) * x;

for (size_t i = 0; i < max_iters; ++i) {
Vector y = P * x;
if (two_norm(x - y) < tol) {
return y;
}
X = V;

}
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Teleportation

Once we get into
this cycle we
can’t get out
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Teleportation

Include
teleportation
computationally

8
Q/:E

Scale to maintain

/ from a site to any
other site

I 1 1

I 1 1

r 1 ... 1
- _

Markov chain
properties
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Sum of all elements
in column is equal
to unity
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Simplifying Teleportation

1
Ny

N 1 Small bias
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Algorithm with Teleportation

Vector x(N);
randomize (x) ;
x = (1.0 / one_norm(x)) * x;

if (two_norm(x - y) < tol) {
return y;

+

X = V;

by

Teleportation
bias

for (size_t i = 0; 1 < max_iters; ++i) { ////
Vector y = (1.0 - alpha) * P * x + alpha / x.num_rows();
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Parallelization St=atoecus ——
| Decompose problem into pieces
Finding that can execute concurrently
Concurrency
\ : \ By task or
t Manage sharing by data
Algorithm
Structure | Fundamental

} organizing principle \ Around tasks or around

Supporting data decomposition or

Structures | — Programming paradigms around data flow
t and data structures

Implementation

Mechanisms ——| Manage tasks, move data
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Walkthrough
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Thank you!
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