
AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583
High Performance Scientific Computing

Andrew Lumsdaine
Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington
Seattle, WA

Lecture 11:
Threads, Shared Memory Parallelism

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Overview
• Multiple cores
• Threads
• Parallelization strategies
• Correctness
• Performance

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Flynn’s Taxonomy (Aside)
• Classic classification of parallel architectures (Michael Flynn, 1966)

3

Single Instruction Multiple Instruction

Si
ng

le
 D

at
a

M
ul

tip
le

 D
at

a

SIMD

SISD MISD

MIMD

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit...

Data
Storage

Based on multiplicity
of instruction

streams, data storage

Plain old
sequential

Anyone in HPC must
know Flynn’s taxonomy

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD and MIMD
• Two principal parallel computing paradigms (multiple operands)

4

Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage...

...

...

Single instruction
at a time

All execution
units execute in

(c)lock step

But each have
their own data

Multiple
instruction

EUs run
independently
(w own instrs)

Shared Memory
Not Shared

Coming
up next

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

A More Refined (Programmer-Oriented) Taxonomy
• Three major modes: SIMD, Shared Memory, Distributed Memory
• Different programming approaches are generally associated with

different modes of parallelism (threads for shared, MPI for distributed)
• A modern supercomputer will have all three major modes present

5

http://www.cise.ufl.edu/resea
rch/ParallelPatterns/PatternLa
nguage/Background/ParallelH
ardware.htm

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Any CPU in the
last 4-5 yearsCore is a

FDREW + regs

Each runs its
own sequence
of instructions

Each can access
its own data

But memory
might be sharedEach has memory

hierarchy

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process Abstraction

Set of information
about process

resources

Sufficient to be able
to start a process

after stopped

Also for accounting /
administrative

purposes

Stored in Process
Control Block (PCB

What does program
counter represent?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Can have many
many processes
running “at the

same time

Process Lifetime

Ready Running

Waiting
New Terminated

Interrupt or
system call

Scheduler
dispatch

I/O or wait
event

I/O or event
completion

Admitted

exit

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Context Switch

Silberschatz, Galvin, Gagne

P0 and P1
are running
processes

What does
this mean?

And this?

External
to OS

External
to OS

PCB = Process
Control Block Expensive!

OS does
not do this

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Multiple Programs Concurrently?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Time

Multitasking

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Task 1

Task 2
Task 0

Task 1

Task 2
Task 0

Tasks can be
scheduled round

robin (time sliced)

Run to context
switch (system

call or interrupt)

Concurrency!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multitasking on Multicore

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Time

Time sliced
and mapped to
separate cores

A single threaded
task can only use

one core at a time

Concurrency!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

Time

Time sliced
and mapped to
separate cores

A multithreaded task
can use multiple
cores at a time

Parallelism!

Shorter
run time!

Threads can
share memory

And L3 cache

What about L1, L2?

Access same
variables

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Cache Coherence

Time

A multithreaded task
can use multiple
cores at a time

Threads can
share memory

Access same
variables

Same variable can be
in two different caches

What if one
gets modified?

Cache coherence /
memory consistency

Hardware
managed

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

In 1/8 the
time (?)

Time

Need enough
cores (8)

Work needs to
be balanced

oops

Parallel computation isn’t
done until all cores are done

Nonetheless, this is the
essence of parallel computing

Not the same as
concurrent

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Strategy
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
MechanismsTimothy Mattson, Beverly Sanders, and Berna Massingill.

2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Decompose problem into pieces
that can execute concurrently

Into tasks that can
execute concurrently

Units that can be operated
on (relatively) independently

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Ways to group tasks to simplify
management of dependencies

Given a decomposition,
ways to share data

among tasks
Ways to order tasks for

correctness, other constraints

Ways to group tasks to simplify
management of dependencies

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principleOrganize around

concurrent tasks

Exploit potential
concurrency in divide

and conquer algorithms

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principle

Organize around a large
data structure that is
broken into “chunks”

Organize around operations
on recursive data structure

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principle

Organize by sequence
of independent stages

Organize by inherent
communication among tasks

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm
Structure

Implementation
Mechanisms

Finding
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Organize communication
and sharing between UEs

Centralized control
distributing tasks

Translate loop
bodies into tasks

Sets of
dynamic tasks

Explicitly manage
shared data

Safely share
a queue

Manage array
data partitioned

among UEs

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Implementation Mechanisms
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Manage task
lifetimes

Enforce ordering
constraints

Get data where it
needs to be when UEs
don’t share memory

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example
• Find the value of

• Using formula

⇡

⇡ =

Z 1

0

4

1 + x2
dx

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Discretization

h

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

4

1 + x(i)2
=

4

1 + (ih)2

A = h
4

1 + (ih)2

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

⇡ ⇡ h
N�1X

i=0

4

1 + (ih)2

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

0 1 2 3 … i i+1 … N-1
h

Numerical Quadrature

double pi = 0;
for (int i = 0; i < N; ++i) {

pi += h * 4.0 / (1 + i*h*i*h);
}

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency

0 1 2 3 … i i+1 … N-1

Partial sums are
all independent

Can be computed
concurrently

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency

0 1 2 3 … i i+1 … N-1

⇡ ⇡ h
k<MX

k=0

2

4
i<(k+1)NX

i=kN

4

1 + (ih)2

3

5

Sum over
partial sums Partial sum

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Decompose total
sum into a sum of

partial sums Each task can be
computed

concurrently

Need to sum up
independent
partial sums

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Partial sums are
independent tasks

Can be executed
in parallel

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm
Structure

Implementation
Mechanisms

Finding
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Translate loop
bodies into tasks

Global sum (may or
may not be shared)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Implementation Mechanisms
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Use C++
async

No ordering
constraints

Use shared memory

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (int k = 0; k < intervals; k += blocksize) {
double partial_pi = 0.0;
for (int i = k; i < (k+blocksize); ++i) {

partial_pi += 4.0 / (1.0 + (i*h*i*h));
}
pi += h * partial_pi;

}

Sequential Implementation (Two Nested Loops)

Discretization

For each set
of discretized

points

Compute
partial sum

Accumulate
final sum

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads vs Tasks
void sayHello(int tnum) {

cout << "Hello World. I am thread " << tnum << endl;

}

int main() {

std::thread tid[16];

for (int i = 0; i < 16; ++i)

tid[i] = thread (sayHello, i);

for (int i = 0; i < 16; ++i)

tid[i].join();

return 0;

}

Task

Launch
threads

Wait for tasks
to finish

“fork”

“join”

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads void partial_pi(unsigned long begin, unsigned long end) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
return partial_pi;

}

int
main(int argc, char *argv[])
{

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (int k = 0; k < intervals; k += blocksize) {

pi += h * partial_pi;
}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Oops

Thread
returns void

How do we update
global total?

How do we get
partial sums?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
pi += h*partial_pi;

}

int
main(int argc, char *argv[])
{

std::vector<std::thread> threads;

double h = 1.0 / (double) intervals;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(std::thread(partial_pi,

k*blocksize, (k+1)*blocksize, h, std::ref(pi)));
}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();

}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Task

Assign task
to thread

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads

void partial_pi(unsigned long begin, unsigned long end, double h, double& pi) {
double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
pi += h*partial_pi;

}

Shared
variable

Local
variable

Update shared
variable

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Threads
int main(int argc, char *argv[]) {

double h = 1.0 / (double) intervals;

std::vector<std::thread> threads;

double pi = 0.0;
for (unsigned long k = 0; k < num_blocks; ++k) {
threads.push_back(

std::thread(
partial_pi, k*blocksize, (k+1)*blocksize, h, std::ref(pi)));

}

for (unsigned long k = 0; k < num_blocks; ++k) {
threads[k].join();

}
std::cout << "pi is approximately " << pi << std::endl;

return 0;
}

Container for
created threads

Thread
constructor

Function that
will be the task

Arguments to
the function

Have to explicitly
tag this as a

reference

We are invoking
std::thread, not

partial pi

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Results

$./thrpi
pi is approximately 3.14159

$./thrpi
pi is approximately 3.14159

$./thrpi
pi is approximately 2.69322

Correct

Correct

Incorrect!

Exactly same
program!

What
happened?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Couple

Clyde Barrow

Bonnie Parker

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Bonnie and Clyde Use ATMs
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

int main() {
cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Withdraw Function

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

Get balance

Compute the
new balanceSave new

balance

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Making Concurrent Withdrawals
int main() {

cout << "Starting balance is " << bank_balance << endl;

thread bonnie(withdraw, "Bonnie", 100);
thread clyde(withdraw, "Clyde", 100);

bonnie.join();
clyde.join();

cout << "Final bank balance is " << bank_balance << endl;

return 0;
}

Launch
threads

Constructor

Run withdraw
function

Wait for
completion

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Bonnie and Clyde Use ATMs
$./a.out
Starting balance is 300
Bonnie withdraws 100
Clyde withdraws 100
Final bank balance is 200

Is this
correct?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What Happened?
void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;
bank_balance = bal - amount;

}

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_s = msg + " withdraws " + to_string(amt) + "\n";

cout << out_s;
bank_balance = bal - amount;

}

Bonnie’s thread,
bal = 300

Clyde’s thread,
bal = 300

Context switch

Context switch

bank_balance
gets 200

bal is still 300

bal is still 300

bank_balance
gets 200

Profit!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What Happened: Race Condition
• Final answer depends on instructions from different threads are

interleaved with each other
• Often occurs with shared writing of shared data
• Often due to read then update shared data
• What was true at the read is not true at the update

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Critical Section Problem
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

We want to tell
operating system not to
run anything else here

When some thread is executing
this critical section, no other

thread may execute it

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Critical-Section Problem
• n processes all competing to use some shared data
• Each process has a code segment, called critical section, in which the

shared data is accessed.
• Problem – ensure that when one process is executing in its critical

section, no other process is allowed to execute in its critical section.
• What do we mean by “execute in its critical section”?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Solution to Critical-Section Problem
• Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical sections
• Progress - If no process is executing in its critical section and there

exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely

• Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted
– Assume that each process executes at a nonzero speed
– No assumption concerning relative speed of the N processes

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Critical Section Problem
int bank_balance = 300;

void withdraw(const string& msg, int amount) {
int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

}

This is a critical section Let’s just think about
mutual exclusion for now

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Critical Section Problem
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {
while (lock == true)
;

lock = true;

int bal = bank_balance;
string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bal - amount;

lock = false;
}

Test if another
thread is holding

the lock

Spin if it is

Fall through when lock == false

Take the lock

Execute
critical
section

Release lock

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Aside
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance -= amount;

}

Still a race

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Aside
bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;
bank_balance = bank_balance - amount;

}

Still a race Read Compute

Then write

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

bank_balance = bank_balance - amount;

}

Critical Section Problem

Critical
section

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

while (lock == true)
;

lock = true;

bank_balance = bank_balance - amount;

lock = false;
}

Solution (?)
Test if another

thread is holding
the lock

Spin if it is

Fall through when lock == false

Take the lock

Execute
critical
section

Release lock

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

bool lock = false;

int bank_balance = 300;

void withdraw(const string& msg, int amount) {

string out_string = msg + " withdraws " + to_string(amount) + "\n";
cout << out_string;

while (lock == true)
;

lock = true;

bank_balance = bank_balance - amount;

lock = false;
}

Solution (?)
Test if another

thread is holding
the lock

Spin if it is

Fall through when lock == false

Common
pattern (when

correct)

Take the lock

Lock might be
taken between the

test and the set We’ve traded one
critical section

problem for another

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Synchronization Hardware
• Many systems provide hardware support for critical section code
• Uniprocessors – could disable interrupts

– Currently running code would execute without preemption
– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptable

– Either test memory word and set value
– Or swap contents of two memory words

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Test and Set
bool TestAndSet (bool& target)
{

bool rv = target;
target = TRUE;
return rv:

}

bool TestAndSet (bool *target)
{

bool rv = *target;
*target = TRUE;
return rv:

}

These are the
semantics, not the

implementation

Implemented in
hardware as an

invisible instruction

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compare And Swap
void CompareAndSwap (bool *a, bool *b)
{

bool temp = *a;
*a = *b;
*b = temp:

}

void CompareAndSwap (bool& a, bool& b)
{

bool temp = a;
a = b;
b = temp:

}

These are the
semantics, not the

implementation

Implemented in
hardware as an

invisible instruction

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Correct Withdraw
int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

while (TestAndSet(lock) == true)
;

bank_balance -= amount;

lock = false;
}

Spin while the value is
true (another thread

holds the lock)

Under what
condition will

we fall through?

What is the
state of the

lock? Release the lock

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Correct Withdraw
int bank_balance = 300;
bool lock = false;

void withdraw(const string& msg, int amount) {
string out_s = msg + " withdraws " + to_string(amt) + "\n";
cout << out_s;

while (TestAndSet(lock) == true)
;

bank_balance -= amount;

lock = false;
}

”Spin lock”
(common pattern)

What is the
CPU doing?

How is it
affecting other

threads?
Is this a good
programming
abstraction?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

In 1/8 the
time (?)

Time

Need enough
cores (8)

Work needs to
be balanced

oops

Parallel computation isn’t
done until all cores are done

Nonetheless, this is the
essence of parallel computing

Not the same as
concurrent

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Numerical Quadrature Task
double partial_pi(unsigned long begin, unsigned long end, double h) {

double partial_pi = 0.0;
for (unsigned long i = begin; i < end; ++i) {
partial_pi += 4.0 / (1.0 + (i*h*i*h));

}
return partial_pi;

}

Nothing remarkable
about this function

Nothing remarkable
about this function

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

$ time ./taskpi 500000000 1
pi is approximately 3.14159
2.006u 0.006s 0:02.01 99.5%

$ time ./taskpi 500000000 2
pi is approximately 3.14159
1.895u 0.008s 0:00.95 198.9%

$ time ./taskpi 500000000 4
pi is approximately 3.14159
2.020u 0.007s 0:00.51 396.0%

Performance
Elapsed time

CPU time OS time

Utilization

Elapsed time

CPU time OS time

Utilization

Elapsed time

CPU time OS time

Utilization
CSE P 524 Parallel Computation Autumn 2019 University of Washington

by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

$ time ./taskpi 500000000 1
pi is approximately 3.14159
2.006u 0.006s 0:02.01 99.5%

$ time ./taskpi 500000000 2
pi is approximately 3.14159
1.895u 0.008s 0:00.95 198.9%

$ time ./taskpi 500000000 4
pi is approximately 3.14159
2.020u 0.007s 0:00.51 396.0%

Performance
$ time ./taskpi 500000000 8
pi is approximately 3.14159
3.669u 0.008s 0:00.48 762.5%

$ time ./taskpi 500000000 16
pi is approximately 3.14159
3.659u 0.009s 0:00.48 760.4%

$ time ./taskpi 500000000 50000
pi is approximately 3.14159
2.963u 1.194s 0:00.92 451.0%

Elapsed time

CPU time

OS time
Utilization

Elapsed time

CPU time

OS time
Utilization

Elapsed time

CPU time

OS time
Utilization

Too many
threadsCSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallel Speedup, Parallel Efficiency

S(p) =
T (n, 1)

T (n, p)

Speedup on p
processing units

Time to run problem
size n on one PU

Time to run problem
size n on p PUs

Efficiency on p
processing units

Ideal parallel
execution time

Divided by
actual parallel
execution time

E(p) =
T (n, 1)/p

T (n, p)
=

T (n, 1)/T (n, p)

p
=

S(p)

p

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Scaling Superlinear
(fishy)

Sublinear (typical)

Linear (ideal)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Person
"Validity of the single processor approach to

achieving large-scale computing capabilities,”
AFIPS Conference Proceedings (30): 483–485,
1967.

Gene Amdahl (1922-2015)

Amdahl’s Law

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)
T (n, 1)

↵T (n, 1) (1� ↵)T (n, 1)

Sequential
execution timeInherently

sequential

Perfectly
parallelizable

T (n, 1) = ↵T (n, 1) + (1� ↵)T (n, 1)

Inherently
sequential

Perfectly
parallelizable

T (n, p) = ↵T (n, 1) + 1
p (1� ↵)T (n, 1)

= T (n, 1)(↵+ 1
p (1� ↵)) Ideal speedup (for

parallelizable portion)Sequential
portion

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahls’s Law)
T (n, 1)

↵T (n, 1) (1� ↵)T (n, 1)

Sequential
execution timeInherently

sequential

Perfectly
parallelizableS(p) =

T (n, 1)

T (n, p)
=

T (n, 1)

T (n, 1)[↵+ 1
p (1� ↵)]

=
1

↵+ 1
p (1� ↵)

 1

↵
lim
p!1

S(p) =
1

↵

Speedup

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

↵T (n, 1) (1� ↵)T (n, 1)

T (n, p)|p!1

T (n, 1)

Limits to Parallelism (Amdahls’s Law)
Inherently
sequential

Perfectly
parallelizable

lim
p!1

S(p) =
1

↵

S(p) =
T (n, 1)

T (n, p)

Speedup is the
ratio of thisTo this

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism (Amdahl’s Law)

Asymptotically
approaches 20

↵ = 0.05

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Limits to Parallelism

↵ = 0.01

Asymptotically
approaches 100

On 1024 cores

Not scalable

No matter how
many cores added

Exascale machines might
have millions of cores

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

There are no Limits (Gustafson’s Law)
• Doing the same problem faster and faster is not how we

use parallel computers
• Rather, we solve bigger and more difficult problems
• I.e., the amount of parallelizable work grows

CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=17451775

↵T (n, 1) p(1� ↵)T (n, 1)

T (n, p) = T (n, 1)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

S(p) = ↵T (n,1)+p(1�↵)T (n,1)
T (n,p) = ↵T (n,1)+p(1�↵)T (n,1)

T (n,1) = ↵+ p(1� ↵)

E(p) = S(p)
p

↵T (n, 1) p(1� ↵)T (n, 1)

T (n, p) = T (n, 1)

There are no Limits (Gustafson’s Law) Perfectly
parallelizable

Parallel
performance Ratio of non sped

up to sped up

lim
p!1

E(p) = (1� ↵)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Two Types of Scaling
Ideal

Strong scaling
Amdahl

Weak scaling
Gustafson

Not scalable

Scalable

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Stay Tuned
• C++ threads
• C++ async()
• C++ atomics

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Thank you!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

Creative Commons BY-NC-SA 4.0 License

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

