
AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583
High Performance Scientific Computing

Andrew Lumsdaine
Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory
University of Washington
Seattle, WA

Lecture 10:
Processes, Threads, Concurrency, Parallelism

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Overview
• Multiple cores
• Concurrency
• Processes
• Threads
• Parallelization strategies
• Correctness

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supercomputers (HPC)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Schematically

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Put sockets
on a blade

Put blades
in a chassis

Put chassis
in a rack

Put racks in
a center

Put centers
in the cloud

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelism and HPC so far

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Pipelining: Multiple
instructions being
processed at once

0512 255 127

ymm0

zmm0

xmm0

64 bits1x double

SIMD (vector) parallelism:
Multiple operands
processed at once

Still sequential
(single core)

Order of operations
is determined

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

General Performance Principles
• Work harder

– Faster core
• Work smarter

– Branch predictions, etc
– Better compilation
– Better algorithm
– Better implementation

• Get help

Dennard scaling
(ended 2005)

What
about this?

We did this

Parallel
Computing

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Flynn’s Taxonomy (Aside)
• Classic classification of parallel architectures (Michael Flynn, 1966)

7

Single Instruction Multiple Instruction

Si
ng

le
 D

at
a

M
ul

tip
le

 D
at

a

SIMD

SISD MISD

MIMD

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit

Instruction
Storage

Instruction
Unit

Execution
Unit...

Data
Storage

Based on multiplicity
of instruction

streams, data storage

Plain old
sequential

Anyone in HPC must
know Flynn’s taxonomy

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD and MIMD
• Two principal parallel computing paradigms (multiple operands)

8

Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage

Instruction
Storage

Instruction
Unit

Execution
Unit

Operand
Storage...

...

...

Single instruction
at a time

All execution
units execute in

(c)lock step

But each have
their own data

Multiple
instruction

EUs run
independently
(w own instrs)

Shared Memory
Not Shared

Coming
up next

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

A More Refined (Programmer-Oriented) Taxonomy
• Three major modes: SIMD, Shared Memory, Distributed Memory
• Different programming approaches are generally associated with

different modes of parallelism (threads for shared, MPI for distributed)
• A modern supercomputer will have all three major modes present

9

http://www.cise.ufl.edu/resea
rch/ParallelPatterns/PatternLa
nguage/Background/ParallelH
ardware.htm

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD in SSE/AVX
Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Flynn’s original
conceptual model

0255 127 63191

ymm1

ymm2

+ + + +

ymm0

64 bits1x double

ymm are 256 bit
registers

vfadd231pd %ymm0, %ymm1, %ymm2

One machine
instruction

Adds all four doubles
simultaneously

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SIMD in SSE/AVX
Instruction
Storage

Instruction
Unit

EU

Operand
Storage

EU EU EU...

Flynn’s original
conceptual model

ymm are 256 bit
registers

One machine
instruction

Adds all eight floats
simultaneously

0255 127 63191

ymm1

ymm2

+ + + +

ymm0

32 bits1x float

vfadd231ps %ymm0, %ymm1, %ymm2

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore for HPC
• How do multicore chips operate (how does the hardware work)?
• How do they get high performance?
• How does the software exploit the hardware (how do we write our

software to exploit the hardware)?
• What are the abstractions that we need to use to reason about

multicore systems?
• What are the programming abstractions and mechanisms?
• Terminology: Program, process, thread
• More terminology: Parallel, concurrent, asynchronous

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore Architecture

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Any CPU in the
last 4-5 yearsCore is a

FDREW + regs

Each runs its
own sequence
of instructions

Each can access
its own data

But memory
might be sharedEach has memory

hierarchy

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade

22 exams
• The exam has 8 questions on it
• It takes 3 minutes to grade one question

• How long will it take you to grade all of the
exams?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade 22

exams
• The exam has 8 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all of the
exams?

• Describe your approach
• List your assumptions

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade 1012

exams (1012 = 46 * 22)
• The exam has 8 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all of the
exams?

• Describe your approach
• Describe another approach
• List your assumptions

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade

8 exams
• The exam has 22 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all
of the exams?

• Describe your approach

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Example
• You are the TA for CSE 142 and have to grade

368 exams (368 = 46 * 8)
• The exam has 22 questions on it
• It takes 3 minutes to grade one question
• You ask 21 friends who agree to help you

• How long will it take the 22 of you to grade all
of the exams?

• What if you had 368 friends? 368*22?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compare And Contrast
• Time for everyone grades one exam
• Time for everyone grades one question

• How (why) did you use the approaches you did?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Many Programs at the Same Time?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Running a Program

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

.globl __Z15hoistedMultiplyRK6MatrixS1_RS_

.p2align 4, 0x90
__Z15hoistedMultiplyRK6MatrixS1_RS_: ## @_Z15hoistedMultiplyRK6MatrixS1_RS_

.cfi_startproc
BB#0:

pushq %rbp
Ltmp16:

.cfi_def_cfa_offset 16
Ltmp17:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp18:
.cfi_def_cfa_register %rbp
pushq %r15
pushq %r14
pushq %r13
pushq %r12
pushq %rbx

Ltmp19:
.cfi_offset %rbx, -56

Ltmp20:
.cfi_offset %r12, -48

Ltmp21:
.cfi_offset %r13, -40

Ltmp22:
.cfi_offset %r14, -32

Ltmp23:
.cfi_offset %r15, -24
movq (%rdi), %rax
movq %rax, -120(%rbp) ## 8-byte Spill

testq %rax, %rax
je LBB2_9

BB#1:

movq 8(%rsi), %rcx
testq %rcx, %rcx
je LBB2_9

BB#2:

movq 16(%rsi), %r12
movq 8(%rdx), %rax
movq %rax, -104(%rbp) ## 8-byte Spill

movq 16(%rdx), %rdx
movq 8(%rdi), %rax
movq 16(%rdi), %r13
leaq -1(%rcx), %rsi
movq %rsi, -88(%rbp) ## 8-byte Spill

movl %ecx, %esi

Bytes from program
stored in memoryWhen a CPU is

executing bytes from
one program

It isn’t executing
bytes from another

How did the
bytes get here?

How does another
program run?

Including from the OS
(just another program)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Many Programs at the Same Time?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

A Word About Operating Systems
• An operating system is a program that provides a standard interface

between the resources of a computer and the users of the computer

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Two of the most
important: CPU

and memory

Two of the most
important: CPU

and memory

Also, file system,
I/O, network, etc

For HPC, these are
the most imporant

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Processes and Threads
• A process is an abstraction for a collection of

resources to represent a (running) program
– CPU
– Memory
– Address space

• A thread is an abstraction of execution (using the
resources within a process)
– Can share an address space

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Many Programs at the Same Time?How Do We Run Many Programs Concurrently?

Do not ever say: ”the
operating system stops

the first process and
starts the next

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Operating System Can Run When…
• The process whose instructions are being executed by the CPU (the

running process) requests a service from the OS (makes a system call)
• In response to a hardware interrupt
• It does not spontaneously run
• It is not somehow running in the background
• Again, when the CPU is executing instructions for one program, it is not

executing instructions for another program
• The only way anything happens on the computer is if the CPU executes

instructions that make it happen

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process Abstraction

Set of information
about process

resources

Sufficient to be able
to start a process

after stopped

Also for accounting /
administrative

purposes

Stored in Process
Control Block (PCB

What does program
counter represent?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Process Concept
$ top -u

Process ID

How
much CPU

How many
threads

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process address space
Stack{Address

Space
Heap

Data

Text {Stored
Program

Created and
managed at run time

Created and
managed at run time

Compiled /
Linked

All 32/48/64 bits

Memory resources
for each process

How can each
process use all the

address space?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Can have many
many processes
running “at the

same time

Process Lifetime

Ready Running

Waiting
New Terminated

Interrupt or
system call

Scheduler
dispatch

I/O or wait
event

I/O or event
completion

Admitted

exit

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Context Switch

Silberschatz, Galvin, Gagne

P0 and P1
are running
processes

What does
this mean?

And this?

External
to OS

External
to OS

PCB = Process
Control Block Expensive!

OS does
not do this

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process Queues

A process control block (PCB)
has all information necessary

to manage a process

Restart exactly
where we left off

Program runs from
start to finish

Context switches
are not observable

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process
invokes fork()

The OS makes a copy
of the original process
and makes it runnable

One of the processes
(the “child”) runs exec()

Which pulls in new
program bits to run

The other process (the
”parent) keeps executing

Can wait for other
process to complete

You see this fork/exec/wait almost all the time
with one particular program you run (which?)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example: process creation in UNIX
#include <unistd.h>

int main () {

fork();

return 0;
}

#include <unistd.h>

int main () {

fork();

return 0;
}

#include <unistd.h>

int main () {

fork();

return 0;
}

One process
calls fork()

Two processes
return from fork()

Two processes
return from fork()

fork() make an
exact copy

Each process “thinks”
it called fork() and

returned

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

fork() returns a
PID identifier

Loop 20 times

Call fork() 20
times

How many processes
get created?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

i == 0

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

i == 1

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

Example int main() {
{

int pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();

}

return 0;
}

i
=
=

2

How deep is
the tree?

How many
processes?Don’t do

this (ever)!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

man fork()

The child process
has a unique id

#include <unistd.h>
pid_t fork();

Upon successful
completion, fork()

returns a value of 0
to the child process
and the returns the
process ID of the

child process to the
parent process

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Example Revisited

int main() {
{

pid_t pids[20];

for (int i = 0; i < 20; ++i) {
pids[i] = fork();
if (pids[i] == 0)

break;
}

return 0;
}

Get return
value of fork()

If zero, the
process is a child

If no, the process
is the parent,

keep going

How many
processes

now?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Process creation in UNIX (fork / exec pattern)

while (true) {
cout << "$ ";
cin >> command;

pid_t child = fork();

if (0 == child) {
execv(command, NULL);

} else {
wait(child);

}
}

while (true) {
cout << "$ ";
cin >> command;

pid_t child = fork();

if (0 == child) {
execv(command, NULL);

} else {
wait(child);

}
}

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

How Do We Run Multiple Programs Concurrently?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multitasking

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Task 1

Task 2
Task 0

Time

Task 1 Task 2Task 0

Task 1

Task 2
Task 0

Tasks (processes or
threads) can be

scheduled sequentially

Run to
completion

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Time

Multitasking

Fetch
Decode
R Read
Execute
R Write

Instructions

Data

Fetch

Load/Store... ...
Clock

cycle

I1
I2
I3

D1
D2

I2
I3

I1

I4

Task 1

Task 2
Task 0

Task 1

Task 2
Task 0

Tasks can be
scheduled round

robin (time sliced)

Run to context
switch (system

call or interrupt)

Concurrency!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multitasking on Multicore

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Time

Time sliced
and mapped to
separate cores

A single threaded
task can only use

one core at a time

Concurrency!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

Time

Time sliced
and mapped to
separate cores

A multithreaded task
can use multiple
cores at a time

Parallelism!

Shorter
run time!

Threads can
share memory

And L3 cache

What about L1, L2?

Access same
variables

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Cache Coherence

Time

A multithreaded task
can use multiple
cores at a time

Threads can
share memory

Access same
variables

Same variable can be
in two different caches

What if one
gets modified?

Cache coherence /
memory consistency

Hardware
managed

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore Time

Time

Run one task In half the
time (?)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore Time

Run one task

In ¼ the
time (?)

Time

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

In 1/8 the
time (?)

Time

Need enough
cores (8)

Work needs to
be balanced

oops

Parallel computation isn’t
done until all cores are done

Nonetheless, this is the
essence of parallel computing

Not the same as
concurrent

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Instructions

Data

Fetch

Load/Store

... ...
Clock

cycle

I1
I2
I3

D1
D2

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L2

L1
(I)

L1
(D)

Instructions

Data

Fetch

Load/Store

L3

F
D
R
E
W

r0
r1
r2
r3
r4
r5

F
D
R
E
W

r0
r1
r2
r3
r4
r5

Multitasking on Multicore

Time

This is the essence of
parallel computing

How do we
do this?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Parallelization Strategy
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
MechanismsTimothy Mattson, Beverly Sanders, and Berna Massingill.

2004. Patterns for Parallel Programming(First ed.). Addison-
Wesley Professional.

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Decompose problem into pieces
that can execute concurrently

Into tasks that can
execute concurrently

Units that can be operated
on (relatively) independently

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Finding Concurrency
Finding Concurrency

Dependency Analysis

Group Tasks

Order Tasks

Data Sharing

Design Evaluation

Decomposition

Data Decomposition

Task Decomposition

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Ways to group tasks to simplify
management of dependencies

Given a decomposition,
ways to share data

among tasks
Ways to order tasks for

correctness, other constraints

Ways to group tasks to simplify
management of dependencies

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principleOrganize around

concurrent tasks

Exploit potential
concurrency in divide

and conquer algorithms

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principle

Organize around a large
data structure that is
broken into “chunks”

Organize around operations
on recursive data structure

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Algorithm Structure

Algorithm Structure

Organize by Tasks

Divide and Conquer

Task Parallelism

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize by Data Decomposition

Recursive Data

Geometric Decomposition

Organize by Flow of Data

Event-Based Coordination

Pipeline

Fundamental
organizing principle

Organize by sequence
of independent stages

Organize by inherent
communication among tasks

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supporting Structures

Supporting Structures

Program Structures

Manager/Worker

SPMD

Algorithm
Structure

Implementation
Mechanisms

Finding
Concurrency

Data Structures

Shared Queue

Shared Data

Loop Parallelism

Fork/Join

Distributed Array

Organize communication
and sharing between UEs

Centralized control
distributing tasks

Translate loop
bodies into tasks

Sets of
dynamic tasks

Explicitly manage
shared data

Safely share
a queue

Manage array
data partitioned

among UEs

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Implementation Mechanisms
Finding

Concurrency

Algorithm
Structure

Supporting
Structures

Implementation Mechanisms

UE Management Synchronization Communication

Manage task
lifetimes

Enforce ordering
constraints

Get data where it
needs to be when UEs
don’t share memory

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Stay Tuned
• C++ threads
• C++ async()
• C++ atomics

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Thank you!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

© Andrew Lumsdaine, 2017-2018

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

Creative Commons BY-NC-SA 4.0 License

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

