
AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

AMATH 483/583
High Performance Scientific Computing

Andrew Lumsdaine

Northwest Institute for Advanced Computing

Pacific Northwest National Laboratory

University of Washington
Seattle, WA

Lecture 1:
Introduction and Overview

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Overview
• Hello Class!

• Course administration and mechanics

• HPC: Past, present, future

• Tour of course topics

• Code development

– C++

– Docker

– bash

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Course Essentials
• AMATH 483/583

• Tu/Th 12:00-1:20

• LOW 216

• https://lums658.github.io/amath583s19/

• Prerequisites: AMATH 301 or CSE 142

– Some experience programming (C, C++, Python, Matlab)

• Course text (suggested): Parallel Programming: Concepts and

Practice, Bertil Schmidt, Jorge Gonzalez-Dominguez, Christian Hundt,

Moritz Schlarb.

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Course Essentials
• Course texts (suggested):

Schmidt et al, Mattson et al

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Canvas
This will take you

to github site

Sign up!

Recorded
lectures

Also via
podcast

More about this
in a minute

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Course Materials on Github
• PDF versions of the slides will be posted

in advance of lecture
• Recordings of lecture are available

online 90 minutes after lecture (via
panopto / canvas – links will also be on
course website)

• Subscribe to the podcast! Hopefully well
in advance

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Your Instructional Team
• Andrew Lumsdaine

• Doris Voina

• Lowell Thompson

• Contact info and office hours will be posted on Canvas and github

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Course Mechanics
• 8 problem sets (60% of your grade, lowest score dropped)

• 2 take home exams (mid-term and final 20% of your grade each)

• 20% penalty per late day (with 4 grace days)

• One “challenge flag”

• Piazza for course discussions, Q/A

• See the course syllabus linked on the course web site

• When in doubt – ask!

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Computing Resources
• Your laptop

• Linux or linux-like development environment

– Docker (supported)

– Mac OS X

– Windows subsystem for Linux

• AWS

• (See course web page for more info)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Academic Integrity
• You are being evaluated in this course for how much you learn
• Not for someone else’s work
• You may not claim someone else’s work as your own (plagiarism)
• You may use any source you like for your work (with limits on AMATH

483/ 583 classmates)
• But you must cite your sources
• Penalty for plagiarism is zero score on entire problem set

– Copying something if you say you copied it is not plagiarism
– (Though you may not get full credit, you won’t get the plagiarism zero)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What’s wrong with this picture?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What’s wrong with this picture?

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Technology
• Laptop use permitted in class (provisionally)

• PROVIDED

• The class create and maintain a course notebook via onenote (cf.

course canvas page)

Extra credit for
contributors

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

More About Me
• I reserve right to use aphorisms
• To tell “dad jokes”
• To tell “war stories”

• To learn from you

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Course Philosophy
• Most of your learning will take

place doing problem sets

• Learner-centered approach
(learning outcomes)

Hardware

Software

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

What This Course is About
• How algorithms, data, software, and hardware interact to affect

performance (and how to orchestrate them to get high performance)

• At the completion of this course, you will be able to

– Write software that fully utilizes hardware performance features

– Describe the principal architecture mechanisms for high performance and

algorithmic and software techniques to take advantage of them

– Recognize opportunities for performance improvement in extant code

– Describe a strategy for tuning HPC code

• Today and years from now

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

What this Course is not About
• Not a software engineering course (but you will learn some basics)
• Not a programming course (ditto)
• Not a hardware course (but you will learn essential models)
• Not a parallel programming course
• Not an operating systems course

• But, you will learn essentials in each of these areas – and more
importantly, how they interact to affect (and effect) performance

• (There are entire courses on each of these topics)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The HPC Canon (as of 2019)
Technology Paradigm Hammer

CPU (single core) Sequential C compiler

SIMD/Vector (single core) Data parallel Intrinsics

Multicore Threads pthreads library

NUMA shared memory Threads pthreads library

GPU GPU CUDA

Clusters Message passing MPI

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Scaling progression of CPUs

Fetch
Decode
R Read
Execute
R Write

i0

Instructions

Data

Simplest model
CPU fetches and

executes instructions

Many cycles per
instruction

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Pipeling

Fetch
Decode
R Read
Execute
R Write

i6
i5
i4
i3
i0

Instructions

Data

Pipelining

Instructions are
fetched in a stream

Processed in
a pipeline A long trip

from memory

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Hierarchical memory

Instructions

Data

F
D
R
E
W

r0
r1
r2
r3
r4
r5
r6
r7

L1
(D)

L1
(I)

L2

Data

Instructions

Use special, fast
memory to keep data
and instructions close

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multicore CPUs

Instructions

Data

F
D
R
E
W

r0
r1
r2
r3
r4
r5
r6
r7

L1
(D)

L1
(I)

L2

r0
r1
r2
r3
r4
r5
r6
r7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

Data

Instructions

Data

Instructions

Replicate 2X
Cores share

slower memory

Caches need to be
kept coherent

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Even more cores

Instructions

Data

F
D
R
E
W

r0
r1
r2
r3
r4
r5
r6
r7

L1
(D)

L1
(I)

L2

r0
r1
r2
r3
r4
r5
r6
r7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

r0
r1
r2
r3
r4
r5
r6
r7

r0
r1
r2
r3
r4
r5
r6
r7

F
D
R
E
W

F
D
R
E
W

Replicate 4X
Cores share

slower memory

Caches need to be
kept coherent

Include super-
slow DRAM

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Symmetric Multi-Processor (SMP)

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Multiple CPU
chips

AKA “sockets”

Memory may be
uniformly shared

among sockets

Caches still need to
be kept (somewhat)

coherent

Uniform memory
access (UMA)

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Asymmetric

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Multiple CPU
chips

AKA “sockets”

Memory may be non-
uniformly shared

among sockets

Caches still need to
be kept (somewhat)
coherent: CC-NUMA

Non-uniform
memory access
(NUMA – most

common)

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

GPU

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The Next Step

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Instructions

Data

F
D
R
E
W

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W L1

(D)

L1
(I)

L2

L3

L1
(D)

L1
(I)

L2

L1
(D)

L1
(I)

L2

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

F
D
R
E
W

F
D
R
E
W

Bus I/O
Devices

Put sockets
on a blade

Put blades
in a chassis

Put chassis
in a rack

Put racks in
a center

Put centers
in the cloud

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Then you have a supercomputer
But how do
you use it?

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The HPC Canon (as of 2019)
Technology Paradigm Hammer

CPU (single core) Sequential C compiler

SIMD/Vector (single core) Data parallel Intrinsics

Multicore Threads pthreads library

NUMA shared memory Threads pthreads library

GPU GPU CUDA

Clusters Message passing MPI

Th
is

qu
ar

te
r

We will be following
this path this quarter

Technology and
paradigm

C++

Order of evolution
(more or less)

Build on each
other

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Tour of the Course (HPC hardware)
• Basic CPU machine model
• Hierarchical memory (registers, cache, virtual memory)
• Instruction level parallelism
• Multicore processors
• Shared memory parallelism
• GPU
• Distributed memory parallelism

• Use running examples
By Hteink.min - commons:File:Louvre Pyramid.jpg, CC BY-SA
3.0, https://en.wikipedia.org/w/index.php?curid=38292385

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Tour of the Course (HPC Software)
• Elements of C++

• Elements of software organization

• Elements of software practice

• Elements of performance
measurement and optimization

Hardware

Software

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Computing is Indispensable to Science and Engineering

• The 3rd (and 4th?) pillar(s)

• Can carry out investigations where
physical experiments would be too
fast, too slow, too hot, too cold,
too costly, too dangerous, etc

• Examples: Weather, climate,
fusion, crash testing, etc. etc.

• HPC means more and better
scientific discovery

• Better world, survival of the planet

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Essential Reading List: Science

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Editorial Comment
• The most exciting phrase to hear

in science, the one that heralds
new discoveries, is not “Eureka!”
(I found it) but “That’s funny”
– Attributed to Isaac Asimov (and

others)

CSE P 524 Parallel Computation Autumn 2019 University of Washington
by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Discovery Science (DOE)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Shock Wave Processing of Advanced Reactive Materials

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Uses of HPC (a sample)
• Cosmology
• Earthquake
• Weather
• Climate modeling
• Automobile crash testing
• Aircraft design
• Jet engine design
• Stockpile stewardship
• Nuclear fusion

• Protein folding
• Modeling the brain
• Modeling bloodstream
• Epidemiology
• Rendering (CGI)
• Sigint
• Block chains
• Gene sequencing
• Etc

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name this Famous Person

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Historical Trends

By AI.Graphic (Own work) [CC BY-SA 3.0
(http://creativecommons.org/licenses/
by-sa/3.0)], via Wikimedia Commons

Where Does High
Performance
Come From?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name This Famous Person

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supercomputers Then and Now

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

End of Moore’s Law

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Where Does High Performance Come From?

By AI.Graphic (Own work) [CC BY-SA 3.0
(http://creativecommons.org/licenses/
by-sa/3.0)], via Wikimedia Commons

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Name this Famous Person

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Supercomputers Then and Now

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Then (20 years ago)

700 Gflops

4,500 Gflops

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Top 500 (top500.org)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Top500 (top500.org)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Top 500

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Shock Wave Processing of Advanced Reactive Materials

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Multiphysics Solver

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Physics: Systems of PDEs

5

Elliptic Parabolic Hyperbolic

• state variables
damage
visco-elastic

• solution strategy
sparse iterative solver
dual domain dec.

• state variables
porosity
chemical reactions

•solution stratedy
sparse iter. solver
α-method integrator

•surface regression•surface propagation (crack)

• state variables
damage
visco-elastic

• solution strategy
sparse iterative solver
dual domain dec.
MD-AVI

•surface propagation (crack)

•mass conservation
based on physics

�0 = J��0 = J�

elliptic-parabolic parabolic-hyperbolic

• constitutive law
hyperelastic
multiscale

• constitutive law
Fourier’s law

• constitutive law
hyperelastic
multiscale

�0cṪ �⇥XQ = Qf on �0

�Q · N0⇥ = 0 on S0

Q = Qp on ⇥�Q0

T = Tp on ⇥�T0

�0
⇥2u

⇥u2
�⇤ · P = f0 in �0

�P · N 0⇥ = �tc⇥ on S0

P · N0 = t0 on ⇥�t0

u = up on ⇥�u0

u(0) = u0 in �0

u̇(0) = v0 in �0

⇥ · P = f0 in �0

�P · N0⇥ = �tc⇥ on S0

P · N 0 = t0 on ��t0

u = up on ��u0

Courtesy Karel Matous,
U. Notre Dame

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Computational Science

System of Partial
Differential Eqns

System of
Nonlinear Eqns

System of Linear
Eqns

Find P that
satisfies this

(too hard)

discretize

F (x) = 0

Find x that
satisfies this

(too hard)

linearize

Ax = b Find x that
satisfies this

A problem we
can solve

All of scientific
computing is this

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Computational Science
• The fundamental computation at the core of many (most/all)

computational science programs is solving

• Assume and

• I.e., x and b are vectors with N real elements and A is a matrix with

N by N real elements

• Solution process only requires basic arithmetic operations

Ax = b

A 2 RN⇥Nx, b 2 RN We will see
this alot

This is what
computers can do

Requirements for
machine learning
are changing this

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Problem Solving
• Software development is difficult

• How do humans attack complex
problems?

• Apply the same principles to software

• Modular / reusable

• Well defined interfaces and functionality

• Understandable

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

First basic truth of code
• Code is a communication medium

with other developers

• And with a future version of yourself

• You can easily write code that no
one (including you) can understand

Don’t do this

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Two simple rules for writing software

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Just don’t

“SO HOW DID YOUR TALK AT STANFORD GO?”

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

C++ development philosophy
P.1: Express ideas directly in code
P.2: Write in ISO Standard C++
P.3: Express intent
P.4: Ideally, a program should be statically type safe
P.5: Prefer compile-time checking to run-time checking
P.6: What cannot be checked at compile time should be checkable at run time
P.7: Catch run-time errors early
P.8: Don't leak any resources
P.9: Don't waste time or space
P.10: Prefer immutable data to mutable data
P.11: Encapsulate messy constructs, rather than spreading through the code
P.12: Use supporting tools as appropriate
P.13: Use support libraries as appropriate

Only one rule
about C++

Many follow
from the two
simple rules

From C++ Core
Guidelines

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

Developing your code

• That includes

(especially) mental

labor

• Use productivity tools

• VS code (rec’d),

Atom, Eclipse

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

What about …?

• Muscle memory for typing is not the same as

productivity (know the difference)

– Stretch yourself

• Use any environment where you are most productive

• We can only support one (VS code + clang + Linux)

• Assignments must work with autograder

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

HPC Legacy
• Command-line and text based (tty)
• Fortran (or “C-tran”)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Programming

int main() {
int a = 1;
double x = 0.3;
foo(x,a);

}

?

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Programming

© S. Harris

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

int main() {
int a = 1;
double x = 0.3;
foo(x,a);

}

Interpreter
(A program that runs your

program)

Interpreted language (Python)

Another
program

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compiled language

int main() {
int a = 1;
double x = 0.3;
foo(x,a);

}

Your program running
(Under control of the OS)

Assembly Code
(Another language)

Object Code
(Another language — binary)

Your
program

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Interpreted vs compiled
Use math

library
Call function from

math library

Declare
variables

Print
result

Use math
library

Use functions
from iostream

library

Call
function

“std” rather
than “math”IO also

in std

Variables
are typed

Code must
be in a

function

Curly braces
for code
blocks

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compilation You can’t run
this code

It needs to be
turned into code

that can run

An
“executable”

Multi-step
process

Compile to
object file

Bits just for
this code

Then link in
libraries for
sqrt and IO

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Compiling
• To compile one source file to an executable

– $ c++ filename.cpp

– (What is the name of the executable?)

• To compile multiple source files to an executable
– $ c++ one.cpp two.cpp three.cpp

• To create an object file
– $ c++ -c one.cpp –o one.o

• To create an executable from multiple object files
– $ c++ one.o two.o three.o –o myexecutable

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Slice of C++
• C++11 (C++14, C++17, C++20)

are quite modern languages
• But C++11 (et al) and libraries

are huge
• We will use a focused slice of

C++11
• Use some modern features
• Avoid legacy features (such as

pointers)
• Avoid modern features (OO)

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

The amath583/base Environment
• We will run a pseudo-linux (a bash

shell) in a Docker container
• Provides a uniform environment for

everyone to use (compiler etc)
• We can much more effectively

support one environment
• Documentation in problem set and

on line

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

shells
• sh: “Bourne shell” (Stephen Bourne, Bell Labs c.1977)
• ksh: Korn shell (David Korn, Bell Labs, c. 1983)
• csh: C shell (Bill Joy, UC Berkeley, 70s)

– and cousin tcsh – which is what I use

• bash (Brian Fox, 1989)
– who knows what this stands for (without searching)

• All are Linux (Unix) processes with read-eval-print loops
• But also complete systems scripting language for dealing with Unix

– Unix philosophy: data in text format, small programs using text I/O

Bourne again
shell

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

SC’19 Student Cluster Competition Call-Out!
• Teams work with advisor and vendor to design and build a cutting-edge,

commercially available cluster constrained by the 3000-watt power limit
• Cluster run a variety of HPC workflows, ranging from being limited by CPU

performance to being memory bandwidth limited to I/O intensive
• Teams are comprised of six undergrad or high-school students plus advisor

https://sc19.supercomputing.org
/program/studentssc/student-
cluster-competition/

Informational meeting:
Tu 5PM-6PM Allen 203
Th 5PM-6PM Allen 203

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

Thank You!

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

© Andrew Lumsdaine, 2017-2019

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

Cuda and Thrust programming examples © Nvidia

Creative Commons BY-NC-SA 4.0 License

75

https://creativecommons.org/licenses/by-nc-sa/4.0/

AMATH 483/583 High-Performance Scientific Computing Spring 2019
University of Washington by Andrew Lumsdaine

