NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High Performance Scientific Computing

Lecture 1: Introduction and Overview

Andrew Lumsdaine Northwest Institute for Advanced Computing Pacific Northwest National Laboratory University of Washington Seattle, WA

Overview

- Hello Class!
- Course administration and mechanics
- HPC: Past, present, future
- Tour of course topics
- Code development
 - C++
 - Docker
 - bash

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Course Essentials

- AMATH 483/583
- Tu/Th 12:00-1:20
- LOW 216
- https://lums658.github.io/amath583s19/
- Prerequisites: AMATH 301 or CSE 142
 - Some experience programming (C, C++, Python, Matlab)
- Course text (suggested): Parallel Programming: Concepts and Practice, Bertil Schmidt, Jorge Gonzalez-Dominguez, Christian Hundt, Moritz Schlarb.

	аматы	183/583				
High Performance Scientific Computing						
						University of Washington Spring 2019
	Meeting Time:	TTh 12:00pm - 1:20pm				
	Location:	LOW 216				
	Instructor:	Andrew Lumsdaine				
	Teaching Assistants	Doris Voina				
		Lowell Thompson				
	TA Office Hours:	TBD				
0000						
	vise noted, all material on this site is licensed under a Creative (

Course Essentials

 Course texts (suggested): Schmidt et al, Mattson et al

Course Materials on Github

- PDF versions of the slides will be posted in advance of lecture
- Recordings of lecture are available online 90 minutes after lecture (via panopto / canvas – links will also be on course website)
- Subscribe to the podcast!

Hopefully well in advance

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest NATIONAL LABORATORY Peadly Operated by Barche fee US Department of Energy

Your Instructional Team

- Andrew Lumsdaine
- Doris Voina
- Lowell Thompson

	AMATH	483/583			
	High Performance	Scientific Computing			
Injurative of Washington					
	Oniversity o	a 2019			
	Sprin	lg 2014			
	Meeting Time:	TTh 12:00pm - 1:20pm			
	Location:	LOW 216			
	Instructor:	Andrew Lumsdaine			
	Teaching Assistants:	Doris Voina			
		Lowell Thompson			
	TA Office Hours:	TBD			
0000					

• Contact info and office hours will be posted on Canvas and github

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Course Mechanics

- 8 problem sets (60% of your grade, lowest score dropped)
- 2 take home exams (mid-term and final 20% of your grade each)
- 20% penalty per late day (with 4 grace days)
- One "challenge flag"
- Piazza for course discussions, Q/A
- See the course syllabus linked on the course web site
- When in doubt ask!

Computing Resources

- Your laptop
- Linux or linux-like development environment
 - Docker (supported)
 - Mac OS X
 - Windows subsystem for Linux
- AWS
- (See course web page for more info)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Academic Integrity

- You are being evaluated in this course for how much you learn
- Not for someone else's work
- You may not claim someone else's work as your own (plagiarism)
- You may use any source you like for your work (with limits on AMATH 483/ 583 classmates)
- But you must cite your sources
- Penalty for plagiarism is zero score on entire problem set
 - Copying something if you say you copied it is not plagiarism
 - (Though you may not get full credit, you won't get the plagiarism zero)

What's wrong with this picture?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

What's wrong with this picture?

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Technology

- Laptop use permitted in class (provisionally)
- PROVIDED
- The class create and maintain a course notebook via onenote (cf. course canvas page)

Extra credit for contributors

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

NORTHWEST INSTITUTE for ADVANCED COMPUTING

More About Me

- I reserve right to use aphorisms
- To tell "dad jokes"
- To tell "war stories"
- To learn from you

NORTHWEST INSTITUTE for ADVANCED COMPUTING

UNIVERSITY of WASHINGTON

CSEAT524836568EHGgbmPertationaAcadanie201160 Ontopretitygo5/Wash20gton University of WashtingtonLognAdatnew Lumsdaine

Course Philosophy

- Most of your learning will take place doing problem sets
- Learner-centered approach (learning outcomes)
 Hardware

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATORY Pendly Operated by Bance Fee (15 Department of Europy

What This Course is About

- How algorithms, data, software, and hardware interact to affect performance (and how to orchestrate them to get high performance)
- At the completion of this course, you will be able to
 - Write software that fully utilizes hardware performance features
 - Describe the principal architecture mechanisms for high performance and algorithmic and software techniques to take advantage of them

AMATH 483/583 High-Performance Scientific Computing Spring 2019

University of Washington by Andrew Lumsdaine

- Recognize opportunities for performance improvement in extant code
- Describe a strategy for tuning HPC code
- Today and years from now

NORTHWEST INSTITUTE for ADVANCED COMPUTING

WASHINGTON

What this Course is not About

- Not a software engineering course (but you will learn some basics)
- Not a programming course (ditto)
- Not a hardware course (but you will learn essential models)
- Not a parallel programming course
- Not an operating systems course
- But, you *will* learn essentials in each of these areas and more importantly, how they *interact* to affect (and effect) performance
- (There are entire courses on each of these topics)

The HPC Canon (as of 2019)

Technology	Paradigm	Hammer
CPU (single core)	Sequential	C compiler
SIMD/Vector (single core)	Data parallel	Intrinsics
Multicore	Threads	pthreads library
NUMA shared memory	Threads	pthreads library
GPU	GPU	CUDA
Clusters	Message passing	MPI

NORTHWEST INSTITUTE for ADVANCED COMPUTING

CSE AT524836588eH0ghmpertationaAcacaaic20file OntwerstitygoSplvash20gton University of byashtirgton_bynAtatnew Lumsdaine Pacific Northwess NATIONAL LABORAT Providy Operated by Batter for the U.S. Department of E UNIVERSITY of WASHINGTON

Then you have a supercomputer

NORTHWEST INSTITUTE for ADVANCED COMPUTING

CSIDAT5248345818eHighmPertationaAcacGaie201119 OninersitygoSphrash20113n University of Washtington.bmAtaInew Lumsdaine

Tour of the Course (HPC hardware)

- Basic CPU machine model
- Hierarchical memory (registers, cache, virtual memory)
- Instruction level parallelism
- Multicore processors
- Shared memory parallelism
- GPU
- Distributed memory parallelism

By Hteink.min - commons:File:Louvre Pyramid.jpg, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=38292385

WASHINGTON

Tour of the Course (HPC Software)

- Elements of C++
- Elements of software organization
- Elements of software practice
- Elements of performance measurement and optimization

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest NATIONAL LABORATORY Peedly Operated by Barbar

Computing is Indispensable to Science and Engineering

- The 3rd (and 4th?) pillar(s)
- Can carry out investigations where physical experiments would be too fast, too slow, too hot, too cold, too costly, too dangerous, etc
- Examples: Weather, climate, fusion, crash testing, etc. etc.
- HPC means more and better scientific discovery
- Better world, survival of the planet

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Actific Northwest NATIONAL LABORATORY Prought Operated by Batche for the U.S. Department of Emagy

Essential Reading List: Science

Easylightee the stud THE 25TH ANNIVERSARY OF THE CLASSIC RISTORY. AKIN FTHE OMIC WITH A NEW FOREWORD WINNER OF THE PURPERS PARE, THE NATIONAL BOOK AWARD. AND THE NATIONAL BOOK CRITICS CIRCLE AWARD ConvegenceNeerial

NORTHWEST INSTITUTE for ADVANCED COMPUTING

UNIVERSITY of WASHINGTON

Editorial Comment

- The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" (I found it) but "That's funny"
 - Attributed to Isaac Asimov (and others)

NORTHWEST INSTITUTE for ADVANCED COMPUTING

CSEAT5248345688eHighmPertationaAcausaie201160 OntopretitygoSplvash20gton University of WashtingtonLoynAdatnew Lumsdaine acific Northwest NATIONAL LABORATORY Peodly Operated by Batcale for the U.S. Department of Evergy UNIVERSITY of WASHINGTON

Shock Wave Processing of Advanced Reactive Materials NiAl BN-TiB₂ TiN/B

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATORY Possible Operated by Barese for the U.S. Department of Exerge

Uses of HPC (a sample)

- Cosmology
- Earthquake
- Weather
- Climate modeling
- Automobile crash testing
- Aircraft design
- Jet engine design
- Stockpile stewardship
- Nuclear fusion

- Protein folding
- Modeling the brain
- Modeling bloodstream
- Epidemiology
- Rendering (CGI)
- Sigint
- Block chains
- Gene sequencing
- Etc

Name this Famous Person

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATOF Proxity Operated by Battele for the US Proxity of Data

Name This Famous Person

University of Washington by Andrew Lumsdaine

UNIVERSITY of WASHINGTON

Supercomputers Then and Now

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATORY Prodit Operated by Batche for the U.S. Department of Energy

Where Does High Performance Come From?

Name this Famous Person

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATORY Predity Operated by Banche Set to U.S. Department of Energy

Supercomputers Then and Now

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Top 500 (top500.org)

Rank	Site	System	Cores	Rmax (TFlop/s)	креак (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Deserve

Deserte

Derver

Top500	(top500.org)	
---------------	--------------	--

5	DOE/SC/LBNL/NERSC United States	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect Cray Inc.	622,336	14,014.7	27,880.7 3,939
6	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Fujitsu	556,104	13,554.6	24,913.5 2,719
7	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4 12,660
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 Cray Inc.	206,720	9,779.0	15,988.0 1,312

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Shock Wave Processing of Advanced Reactive Materials NiAl BN-TiB₂ TiN/B

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATORY Possible Operated by Barese for the U.S. Department of Exerge

Multiphysics Solver

$$\begin{aligned}
\varphi = \psi_{e}(F_{e},T) + \psi_{p}(\chi,T) + \psi_{T}(T) \\
-\rho_{0}T\left(\frac{\partial \dot{\psi}_{T}}{\partial T}\right) + \text{Div}Q = Q_{p} + Q_{e} + Q_{e} + \rho_{0}T \\
-\rho_{0}T\left(\frac{\partial \dot{\psi}_{T}}{\partial T}\right) + \text{Div}Q = Q_{p} + Q_{e} + Q_{e} + \rho_{0}T \\
Q_{p} = \begin{bmatrix} T_{r}P\left[F_{T}^{T} - T\left(\frac{\partial F_{T}}{\partial T}\right)^{T}\right] : \dot{F}_{p} - \frac{\partial \psi_{p}}{\partial \chi} \cdot \dot{\chi} - \\
-T\left[P\left(F_{T}^{T} : \dot{F}_{p}\right) - J_{p}J_{T}\frac{\partial W_{e}}{\partial F_{e}}F_{p}^{-T}F_{p}^{-T}T\right] : F_{e}F_{p}\frac{\partial F_{T}}{\partial T} + T\rho_{0}\left(\frac{\partial \dot{\psi}_{p}}{\partial T}\right) \\
Q_{e} = -T\left[P\left(\frac{\partial F_{T}}{\partial T}\right)^{T}F_{p}^{T} : \dot{F}_{e} + \left(J_{p}J_{T}\frac{\partial^{2}W_{e}}{\partial F_{e}\partial F_{e}} : \dot{F}_{e}F_{p}^{-T}F_{T}^{-T}\right] : F_{e}F_{p}\frac{\partial F_{T}}{\partial T}\right] + T\rho_{0}\left(\frac{\partial \dot{\psi}_{e}}{\partial T}\right) \\
Q_{e} = -T\left[P\left(\frac{\partial F_{T}}{\partial T}\right)^{T}F_{p}^{-T} : \dot{F}_{e}F_{p}\frac{\partial^{2}W_{e}}{\partial F_{e}\partial T}F_{p}^{-T}T_{T}^{-T}\right] : F_{e}F_{p}\frac{\partial F_{T}}{\partial T}\right] + T\rho_{0}\left(\frac{\partial \dot{\psi}_{e}}{\partial T}\right) \\
Q_{e} = -T\left\{\left[P\left(F_{T}^{-T} : \frac{\partial F_{T}}{\partial T}\right) - P\left(\frac{\partial F_{T}}{\partial T}\right)^{T}F_{T}^{-T} + J_{p}J_{T}\frac{\partial^{2}W_{e}}{\partial F_{e}\partial T}F_{p}^{-T}T_{T}^{-T}\right] : F_{e}F_{p}\frac{\partial F_{T}}{\partial T}\right] + T\rho_{0}\left(\frac{\partial \dot{\psi}_{e}}{\partial T}\right) \\
P\left|_{\alpha_{0}} = \rho_{0}\frac{\partial \psi_{e}}{\partial F_{e}}F_{p}^{-T}F_{T}^{-T} = J_{p}J_{T}\frac{\partial W_{e}}{\partial F_{e}}F_{p}^{-T}F_{T}^{-T} \\
Q_{e} = -F^{-1}\kappa F^{-1}\nabla_{0}T
\end{aligned}$$
Approximately the second seco

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine

Proudly Operated by **Battelic** for the U.S. Department of Energy

Physics: Systems	of PDEs		
Elliptic	Parabolic	Hyperbolic	
$egin{array}{rcl} abla \cdot oldsymbol{P} &=& oldsymbol{f}_0 & ext{in} & \Omega_0 \ [\![oldsymbol{P} \cdot oldsymbol{N}_0]\!] &=& [\![oldsymbol{t}_c]\!] & ext{on} & S_0 \ oldsymbol{P} \cdot oldsymbol{N}_0 &=& oldsymbol{t}_0 & ext{on} & \partial\Omega_{t_0} \ oldsymbol{u} &=& oldsymbol{u}_p & ext{on} & \partial\Omega_{u_0} \end{array}$	$\rho_0 c \dot{T} - \nabla_X \boldsymbol{Q} = \boldsymbol{Q}_f \text{ on } \Omega_0$ $\llbracket \boldsymbol{Q} \cdot \boldsymbol{N}_0 \rrbracket = 0 \text{ on } S_0$ $\boldsymbol{Q} = \boldsymbol{Q}_p \text{ on } \partial \Omega_{Q_0}$ $T = T_p \text{ on } \partial \Omega_{T_0}$	$\rho_0 \frac{\partial^2 \boldsymbol{u}}{\partial \boldsymbol{u}^2} - \nabla \cdot \boldsymbol{P} = \boldsymbol{f}_0 \text{ in } \Omega_0$ $\llbracket \boldsymbol{P} \cdot \boldsymbol{N}_0 \rrbracket = \llbracket \boldsymbol{t}_c \rrbracket \text{ on } S_0$ $\boldsymbol{P} \cdot \boldsymbol{N}_0 = \boldsymbol{t}_0 \text{ on } \partial \Omega_{t_0}$ $\boldsymbol{u} = \boldsymbol{u}_p \text{ on } \partial \Omega_{u_0}$ $\boldsymbol{u}(0) = \boldsymbol{u}_0 \text{ in } \Omega_0$ $\dot{\boldsymbol{u}}(0) = \boldsymbol{v}_0 \text{ in } \Omega_0$	
 constitutive law hyperelastic multiscale 	 constitutive law Fourier's law 	 constitutive law hyperelastic multiscale 	
 state variables damage visco-elastic 	 state variables porosity chemical reactions 	 state variables damage visco-elastic 	
$\rho_0 = J\rho$	 mass conservation based on physics 	$\rho_0 = J\rho$	
 solution strategy sparse iterative solver dual domain dec. 	•solution stratedy sparse iter. solver α-method integrator	 solution strategy sparse iterative solver dual domain dec. MD-AVI 	Courtesy Karel Matous, U. Notre Dame
ST INSTITUTE for ADVANCEL	D COMPUTING MATH 483/583 High-Performance Scientific Computing 3 University of Washington by Andrew Lumsdain	Pacific Northwest National Joint Control of Control Spring 2019 e	UNIVERSITY of WASHINGTON

Problem Solving

- Software development is difficult
- How do humans attack complex problems?
- Apply the same principles to software
- Modular / reusable
- Well defined interfaces and functionality
- Understandable

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine acific Northwest NATIONAL LABORATORY Portal Operated by Back for the US Department of Energy

First basic truth of code

- Code is a communication medium with other developers
- And with a future version of yourself

• You can easily write code that no one (including you) can understand

Two simple rules for writing software

NORTHWEST INSTITUTE for ADVANCED COMPUTING

"SO HOW DID YOUR TALK AT STANFORD GO?"

Developing your code

- That includes • (especially) mental labor
- Use productivity tools •
- VS code (rec'd), Atom, Eclipse

NORTHWEST INSTITUTE for ADVANCED COMPUTING

- Muscle memory for typing is not the same as productivity (know the difference)
 - Stretch yourself
- Use any environment where you are most productive
- We can only support one (VS code + clang + Linux)
- Assignments must work with autograder

HPC Legacy

- Command-line and text based (tty)
- Fortran (or "C-tran")

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATO Proadly Operated by Batcak for the U.S. Department of En UNIVERSITY of WASHINGTON

Compiling

- To compile one source file to an executable
 - \$ c++ filename.cpp
 - (What is the name of the executable?)
- To compile multiple source files to an executable
 - \$ c++ one.cpp two.cpp three.cpp
- To create an object file
 - \$ c++ -c one.cpp –o one.o
- To create an executable from multiple object files
 - \$ c++ one.o two.o three.o –o myexecutable

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest NATIONAL LABORATORY Protely Operated by Battel of the US Dapartment of Design

Slice of C++

- C++11 (C++14, C++17, C++20) are quite modern languages
- But C++11 (et al) and libraries are *huge*
- We will use a focused slice of C++11
- Use some modern features
- Avoid legacy features (such as pointers)
- Avoid modern features (OO)

```
#include <cmath>
#include <iostream>
int main() {
    double a = 3.14;
    double b = std::sqrt(a);
    std::cout << b << std::endl;
    return 0;
}
```

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Northwest ONAL LABORATORY and Operated by Battele du US Department of Daugy

The amath583/base Environment

- We will run a pseudo-linux (a bash shell) in a Docker container
- Provides a uniform environment for everyone to use (compiler etc)
- We can much more effectively support one environment
- Documentation in problem set and on line

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine cific Northwest NATIONAL LABORATORY Profit Operated by Batelet for the U.S. Department of Europy

WASHINGTON

shells

- sh: "Bourne shell" (Stephen Bourne, Bell Labs c.1977)
- ksh: Korn shell (David Korn, Bell Labs, c. 1983)
- csh: C shell (Bill Joy, UC Berkeley, 70s)
 and cousin tcsh which is what I use
- bash (Brian Fox, 1989)-
 - who knows what this stands for (without searching)
- All are Linux (Unix) processes with read-eval-print loops
- But also complete systems scripting language for dealing with Unix
 Unix philosophy: data in text format, small programs using text I/O

Bourne again shell
SC'19 Student Cluster Competition Call-Out!

- Teams work with advisor and vendor to design and build a cutting-edge, commercially available cluster constrained by the 3000-watt power limit
- Cluster run a variety of HPC workflows, ranging from being limited by CPU performance to being memory bandwidth limited to I/O intensive
- Teams are comprised of six undergrad or high-school students plus advisor

https://sc19.supercomputing.org /program/studentssc/studentcluster-competition/

> Informational meeting: Tu 5PM-6PM Allen 203 Th 5PM-6PM Allen 203

NORTHWEST INSTITUTE for ADVANCED COMPUTING

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine Pacific Northwest NATIONAL LABORATOR Proudly Operated by Batele for the U.S. Department of Energy UNIVERSITY of WASHINGTON

Creative Commons BY-NC-SA 4.0 License

© Andrew Lumsdaine, 2017-2019

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by-nc-sa/4.0/

Cuda and Thrust programming examples © Nvidia

NORTHWEST INSTITUTE for ADVANCED COMPUTING

Pacific Northwest NATIONAL LABORATORY Peody Operated by BBRCE for the US Department of Emergy UNIVERSITY of WASHINGTON

75

AMATH 483/583 High-Performance Scientific Computing Spring 2019 University of Washington by Andrew Lumsdaine

